版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p> Lateral stiffness estimation in frames and its implementation to continuum models</p><p> for linear and nonlinear static analysis</p><p> Tuba Ero?glu · Sinan Akkar</p>
2、<p> Abstract:Continuum model is a useful tool for approximate analysis of tall structures including moment-resisting frames and shear wall-frame systems. In continuum model, discrete buildings are simplified such
3、 that their overall behavior is described through the contributions of flexural and shear stiffnesses at the story levels. Therefore, accurate determination of these lateral stiffness components constitutes one of the ma
4、jor issues in establishing reliable continuum models even if the propose</p><p> Key words: Approximate nonlinear methods Continuum model Global capacity Nonlinear response Frames and dual systems<
5、;/p><p> 1 Introduction</p><p> Reliable estimation of structural response is essential in the seismic performance assessment and design because it provides the major input while describing the
6、global capacity of structures under strong ground motions.With the advent of computer technology and sophisticated structural analysis programs, the analysts are now able to refine their structural models to compute more
7、 accurate structural response. However, at the expense of capturing detailed structural behavior, the increased unknow</p><p> new buildings. The continuum model, in this sense, is an accomplished approxima
8、te tool for estimating the overall dynamic behavior of moment resisting frames (MRFs) and shear wall-frame (dual) systems.</p><p> Continuum model, as an approximation to complex discrete models, has been u
9、sed extensively in the literature. Westergaard (1933) used equivalent undamped shear beam concept for modeling tall buildings under earthquake induced shocks through the implementation of shear waves propagating in the c
10、ontinuum media. Later, the continuous shear beam model has been implemented by many researchers (e.g. Iwan 1997; Gülkan and Akkar 2002; Akkar et al. 2005; Chopra and Chintanapakdee 2001) to approximate the</p>
11、<p> Heidebrecht and Stafford Smith (1973) defined a continuum model (hereinafter HS73) for approximating tall shear wall-frame type structures that is based on the solution of a fourthorder partial differential
12、equation (PDE). Miranda (1999) presented the solution of this PDE under a set of lateral static loading cases to approximate the maximum roof and interstory drift demands on first-mode dominant structures. Later, Heidebr
13、echt and Rutenberg (2000) showed a different version of HS73 method to dr</p><p> While the theoretical applications of continuum model are abundant as briefly addressed above, its practical implementation
14、is rather limited as the determination of equivalent flexural (EI) and shear (GA) stiffnesses to represent the actual lateral stiffness variation in discrete systems have not been fully addressed in the literature. This
15、flaw has also restricted the efficient use of continuum model beyond elastic limits because the nonlinear behavior of continuum models is dictated by the ch</p><p> This paper focuses on the realistic deter
16、mination of lateral stiffness for continuum models. EI and GA defined in discrete systems are adapted to continuum models through an analytical expression that considers the heightwise variation of boundary conditions in
17、 discrete systems. The HS73 model is used as the base continuum model since it is capable of representing the structural response between pure flexure and shear behavior. The proposed analytical expression is evaluated b
18、y comparing the def</p><p> 2 Continuum model characteristics</p><p> The HS73 model is composed of a flexural and shear beam to define the flexural (EI) and shear (GA) stiffness contribution
19、s to the overall lateral stiffness. Themajor model parameters EI and GA are related to each other through the coefficient α (Eq.1).</p><p> As α goes to infinity the model would exhibit pure shear deformati
20、on whereas α = 0 indicates pure flexural deformation. Note that it is essential to identify the structural members of discrete buildings for their flexural and shear beam contributions because the overall behavior of con
21、tinuum model is governed by the changes in EI and GA. Equation 2 shows the computation of GA for a single column member in HS73. The variables Ic and h denote the column moment of inertia and story height, respecti</p
22、><p> Equation 2 indicates that GA (shear component of total lateral stiffness) is computed as a fraction of flexural stiffness of frames oriented in the lateral loading direction. Accordingly, the flexural pa
23、rt (EI) of total stiffness is computed either by considering the shear-wall members in the loading direction and/or other columns that do not span into a frame in the direction of loading. This assumption works fairly we
24、ll for dual systems. However, it may fail in MRFs because it will discard the</p><p> 3 Lateral stiffness approximations for MRFs</p><p> There are numerous studies on the determination of la
25、teral stiffness in MRFs. The methods proposed in Muto (1974) and Hosseini and Imagh-e-Naiini (1999) (hereinafter M74 and HI99, respectively) are presented in this paper and they are compared with the HS73 approach for it
26、s enhancement in describing the lateral deformation behavior of structural systems. Equation 3 shows the total lateral stiffness, k, definition of M74 for a column at an intermediate story.</p><p> The para
27、meters Ic, h, Ib1, Ib2, l1 and l2 have the samemeanings as in Eq. (2). </p><p> Note that Eq. (2) proposed in HS73 is a simplified version of Eq. (3) for a unit rotation. The former expression assumes that
28、the dimensions of beams spanning into the column from top are the same as those spanning into the column from bottom. However, Eqs. (2) and (3) exhibit a significant conceptual difference: the HS73 approach interprets th
29、e resulting stiffness term as the shear contribution whereas M74 considers it as the total lateral stiffness. </p><p> The HI99 method defines the lateral stiffness of MRFs through an equivalent simple syst
30、em that consists of sub-modules of one-bay/one-story frames. Each sub-module represents a story in the original structure and the column inertia (Ic) of a sub-module is calculated by taking half of the total moment of in
31、ertia of all columns in the original story. The relative rigidities of upper (ku) and lower (kl ) beams in a sub-module are calculated by summing all the relative beam rigidities at the top and</p><p> The
32、parameter kc and h denote the relative rigidity and length of the column in the submodule,respectively. The total lateral stiffness at ground story is computed by assigning relatively large stiffness values to kl to repr
33、esent the fixed-base conditions. Equation (5) has a similar functional format as Eqs. (2) and (3). Since the lateral stiffness computed stands for the total lateral stiffness, it exhibits a more similar theoretical frame
34、work to M74. </p><p> Discussions presented above indicate that both M74 and HI99 consider the variations in lateral stiffness at the ground story due to fixed-base boundary conditions. However, they ignore
35、 the free end conditions at the top story. As a matter of fact, Schultz (1992) pointed that lateral stiffness changes along the building height might be abrupt at boundary stories. The boundary stories defined by Schultz
36、 (1992) not only consist of ground and top floors but also the 2nd story because the propagation</p><p> References</p><p> 1.Akkar S, Yazgan U, Gülkan P (2005) Drift estimates in frame b
37、uildings subjected to near-fault ground motions. J Struct Eng ASCE 131(7):1014–1024</p><p> 2.American Society of Civil Engineers (ASCE) (2007) Seismic rehabilitation of existing buildings: ASCE standard, r
38、eport no. ASCE/SEI 41-06. Reston, Virginia</p><p> 3.Applied Technology Council (ATC) (2004) FEMA-440 Improvement of nonlinear static seismic analysis pro-cedures, ATC-55 project report. prepared by the App
39、lied technology Council for the Federal Emergency Management Agency, Washington, DC.</p><p> 4.Blume JA (1968) Dynamic characteristics of multi-story buildings. J Struct Div ASCE 94(2):377–402 </p>&
40、lt;p> 5.Borzi B, Pinho R, Crowley H (2008) Simpli?ed pushover-based vulnerability analysis for large-scale assessment of RC buildings. Eng Struct 30:804–820</p><p> 框架橫向剛度估計和橫向剛度線性</p><p>
41、 與非線性的連續(xù)模型的靜力分析</p><p> 吐哈埃爾奧盧?思南阿卡爾</p><p><b> 摘要:</b></p><p> 連續(xù)模型是高層結(jié)構(gòu)的近似分析,包括抗彎框架剪力墻系統(tǒng)都是非常有用的工具。在連續(xù)介質(zhì)模型,離散的建筑物被簡化,這樣他們的整體性能可以通過樓層層面的彎曲和剪切剛度來描述。因此,這些組件橫向剛度的準(zhǔn)確測定,是建
42、立可靠的連續(xù)模型的主要問題之一,即提出的解決方案是一個實際的近似結(jié)構(gòu)。本研究首先探討通過與精確結(jié)果的比較,通過對橫向剛度組件(即彎曲和剪切剛度)以往文獻的計算來獲得離散模型?;谶@些比較,一種適用于橫向剛度連續(xù)模型變化的新方法被提出來。建議的方法是進行延伸來估計非線性抗彎矩框架的整體能力。該核查是比較與建議的過程,而估計的實際系統(tǒng)的非線性特性表明其對大型建筑表現(xiàn)出類似的結(jié)構(gòu)特征,并被有效利用。這一結(jié)論是通過比較,來進一步說明單自由度的非
43、線性特性歷史分析(單自由度),它們從實際系統(tǒng)和擬議的程序的近似計算來得到系統(tǒng)的整體能力曲線。</p><p> 關(guān)鍵詞:近似非線性方法 連續(xù)模型 整體能力 非線性特性 框架和雙系統(tǒng)</p><p><b> 1 介紹</b></p><p> 結(jié)構(gòu)特性的可靠估計是抗震性能評估和設(shè)計必不可少,因為它提供主要數(shù)據(jù)在描述在強地震時結(jié)構(gòu)的
44、整體能力。隨著計算機技術(shù)和先進的結(jié)構(gòu)分析程序的出現(xiàn),分析家現(xiàn)在能夠改進其結(jié)構(gòu)模型來計算更準(zhǔn)確的結(jié)構(gòu)反應(yīng)。然而,在捕捉詳細的結(jié)構(gòu)性能為前提,模型參數(shù)未知的增加與地面運動相結(jié)合的不確定性,會使分析結(jié)果繁瑣與解釋費時。復(fù)雜的結(jié)構(gòu)模型和反應(yīng)歷史分析,也可用于大型建筑群性能評估或新建筑物的初步設(shè)計的確定。連續(xù)模型,在這個意義上,是估計抗彎矩框架(MRFs)和剪力墻框架(dual)系統(tǒng)近似整體動態(tài)反應(yīng)的工具。</p><p>
45、; 連續(xù)模型,近似的作為一種復(fù)雜的離散模型,已被廣泛使用在文獻中。Westergaard(1933)是用于地震引起的沖擊下,高層建筑模型通過連續(xù)介質(zhì)傳播橫波方式的等效阻尼剪切梁的概念。后來,連續(xù)剪切梁模型由許多研究者實現(xiàn)了(如伊萬1997年古坎和阿卡爾2002;阿卡爾等人,2005年。普拉和柴可珀達2001)模擬地震引起的變形對框架體系的作用。可翰和 貝冉斯 (1964)采用等效剪切梁的理念擴展到連續(xù)剪切和彎曲梁的組合。黑布瑞去和斯塔
46、福德史密斯(1973)所界定連續(xù)的結(jié)構(gòu)模型(以下簡稱HS73),是用一個四階偏微分方程(PDE)來解決高層剪力墻框架模型,</p><p> 雖然連續(xù)介質(zhì)模型的理論應(yīng)用建立在簡要討論上,其實際執(zhí)行情況是相當(dāng)有限,因為等效彎曲測定和剪剛度測定,代表的實際離散系統(tǒng)橫向剛度變化在文獻里沒有得到充分處理。這一缺陷也限制了,因為超出彈性極限的非線性行為的連續(xù)模型的有效利用,連續(xù)模型是取決于在后階段EI和GA的變化。<
47、;/p><p> 本文的重點是橫向剛度連續(xù)模型的定義。EI和GA在離散系統(tǒng)中的定義,是邊界條件下離散系統(tǒng)的變化模型的解析表達式。該HS73模型作為基礎(chǔ)連續(xù)模型,是因為它表現(xiàn)了純彎曲和剪切行為,能代表結(jié)構(gòu)反應(yīng)的能力。建議的解析表達式是通過比較在第一個模式兼容加載模式下的,連續(xù)模型和實際離散系統(tǒng)的變形模式。在EI和GA測定的改善,在結(jié)合了第二個過程的極限狀態(tài)分析的基礎(chǔ)上,描述了結(jié)構(gòu)承載超出其彈性極限后的整體能力。說明案
48、例研究表明,連續(xù)模型,使用時與所建議的方法一起,可以成為線性和非線性靜力分析的有用工具。</p><p><b> 2 連續(xù)模型的特點</b></p><p> 該HS73模型是由彎曲和剪切梁組成,來定義彎曲(EI)及剪切(GA)剛度的,從而確定整體剛度橫向剛度。主要的模型參數(shù)EI和GA有關(guān),通過彼此的(公式1)系數(shù)α相互聯(lián)系。</p><p&
49、gt; 以α趨于無窮模型將展出純剪切變形而α= 0表示純彎曲變形。注意的事,必須查明離散建筑物的結(jié)構(gòu)構(gòu)件的彎曲和剪切,因為連續(xù)模型的整體行為是受在EI和GA的變化而決定。公式2表示在HS73的一系列計算。變量Ic和H分別表示的慣性和層高。Ib1的慣性和由L1和L2,分別確定相對僵化的總長度除以Ib2,梁毗鄰自頂柱(見圖。在3提到文件)。</p><p> 公式2表明,GA(占總數(shù)的橫向剛度剪切組件)是一個橫向
50、載荷方向框架抗彎剛度的計算分數(shù)。彎曲部分(EI)的總剛度計算或者考慮在剪力墻加載方向/或不成為一個框架中其它柱跨度方向的負荷載。這個假設(shè)對雙系統(tǒng)效果非常好。但是,它可能會失敗,因為它會在抗彎矩框架上沿載荷方向,將柱并到GA橫向剛度。事實上,這種近似將減少整個抗彎矩框架到剪力梁,將會不準(zhǔn)確的描述抗彎矩框架反應(yīng),除非所有的梁被認為是剛性的。就作者的所知,研究使用HS73模型不僅詳細描述了α的計算,而且把離散建筑系統(tǒng)作為連續(xù)模型。在大多數(shù)情況
51、下,這些研究不同結(jié)構(gòu)分配過程,從純彎曲跨越到純剪通用的α值。這種方法被認為是合理的,是代表不同結(jié)構(gòu)理論的行為。不過,以上強調(diào)的事實,即有關(guān)的橫向剛度計算需要進一步調(diào)查,以提高模型的性能,同時簡化HS73實際抗彎矩框架作為一個連續(xù)模型。在這個意義上說,的關(guān)于框架側(cè)向剛度估計的一些重要研究是值得討論的。這可能是關(guān)于GA和EI有用的增強計算方法,用于描述連續(xù)系統(tǒng)的總橫向剛度。</p><p> 3 抗彎矩框架的近似橫
52、向剛度</p><p> 這里有很多研究關(guān)于抗彎矩框架橫向剛度的測定。Muto (1974) 和 Hosseini 和Imagh-e-Naiini (1999) 所提出的方法(以下分別簡稱M74和HI99)基于本文件和他們相對于HS73途徑提高了其在描述系統(tǒng)結(jié)構(gòu)的側(cè)向變形。公式3顯示總橫向剛度K的M74,是一根柱在一個中間樓層的值。</p><p> 參數(shù)lchIb1,Ib2,L1和L
53、2在公式2中的具相同涵義。</p><p> 公式(2)是在HS73提出的一個關(guān)于公式(3)的簡化版本。前者表達假定頂部柱之間梁的跨度和底部柱之間梁的跨度相同。不過,公式(2)及(3)表現(xiàn)出一個重大的概念區(qū)別: M74 認為它為總計的橫向剛度, HS73同樣地解釋為剪切作用的術(shù)語。</p><p> 該方法HI99通過一個簡單的系統(tǒng)把抗彎框架的橫向剛度,定義為是由一層樓高的框架的子模板
54、組成。每個子模塊表現(xiàn)為原結(jié)構(gòu)的一個樓層,而且子模塊的柱剛度,由最初的層所有柱的總計剛度的一半來計算。在一個子模塊的上面的 (ku )、比較低的 (kl )梁的相對剛度,由最初層的頂和底部梁的剛度計算而得來。樓層總的橫向剛度在公式5中由HI99給出。</p><p> 參數(shù)架KC和h分別表示了柱在子模塊中的相對剛性和長度。第一層總橫向剛度的計算方法是用較大的那個剛度值,分配到kl來表示固定的基礎(chǔ)條件。具有類似功能
55、的公式(2)及公式(3)。由橫向剛度計算的總橫向剛度,它表現(xiàn)出一種更類似于M74的理論框架。</p><p> 上面介紹的討論表明,這兩個M74和HI99考慮橫向剛度從第一層到固定基地邊界的變化。但是,他們忽視了在頂層自由端的條件。由于事實上,舒爾茨(1992)指出,建筑物的橫向剛度沿高度變化可能發(fā)生在邊界層。根據(jù)上述情況,舒爾茨(1992)的邊界層定義不僅包括地面和頂層也包括第二層。雖然舒爾茨(1992)為某
56、些特定情況下提出了邊界層的修正系數(shù)。他不用一般表達式來計算邊界層上剛度的變化。</p><p><b> 參 考 文 獻</b></p><p> 1.Akkar S, Yazgan U, Gülkan P (2005) Drift estimates in frame buildings subjected to near-fault ground m
57、otions. J Struct Eng ASCE 131(7):1014–1024</p><p> 2.American Society of Civil Engineers (ASCE) (2007) Seismic rehabilitation of existing buildings: ASCE standard, report no. ASCE/SEI 41-06. Reston, Virgini
58、a</p><p> 3.Applied Technology Council (ATC) (2004) FEMA-440 Improvement of nonlinear static seismic analysis pro-cedures, ATC-55 project report. prepared by the Applied technology Council for the Federal E
59、mergency Management Agency, Washington, DC.</p><p> 4.Blume JA (1968) Dynamic characteristics of multi-story buildings. J Struct Div ASCE 94(2):377–402 </p><p> 5.Borzi B, Pinho R, Crowley H (
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 建筑外文翻譯---高層結(jié)構(gòu)與鋼結(jié)構(gòu)
- 高層建筑與鋼結(jié)構(gòu)外文翻譯
- 高層建筑結(jié)構(gòu)的發(fā)展-外文翻譯
- 土木外文翻譯---高層建筑與鋼結(jié)構(gòu)
- 高層建筑外文翻譯
- 外文翻譯---高層建筑及結(jié)構(gòu)設(shè)計
- [雙語翻譯]高層建筑外文翻譯
- 高層建筑外文翻譯 (2)
- 高層建筑組成外文翻譯
- 外文翻譯---高層結(jié)構(gòu)與鋼結(jié)構(gòu)
- 土木外文翻譯---建筑物的組成及高層結(jié)構(gòu)
- [雙語翻譯]高層建筑外文翻譯(英文)
- [雙語翻譯]高層建筑外文翻譯.DOC
- 超高層商務(wù)建筑外文翻譯
- 淺談高層鋼結(jié)構(gòu)建筑抗震設(shè)計
- [雙語翻譯]高層建筑外文翻譯中英全
- [雙語翻譯]高層建筑外文翻譯(英文).PDF
- 建筑外文翻譯--超高層建筑結(jié)構(gòu)橫向風(fēng)荷載效應(yīng)
- 高層建筑畢業(yè)論文外文翻譯
- 2017年高層建筑外文翻譯
評論
0/150
提交評論