版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p> Optimization of soft rock engineering with particular reference to coal mining</p><p><b> Abstract </b></p><p> Soft rock engineering is a difficult topic which has rece
2、ived much attention in the field of rock mechanics and engineering. Research and practical work have been carried out, but much of the work has been limited to solving problems from the surface. For overcoming the diffic
3、ulties of large deformations, long duration time-dependent effects, and difficulties in stabilizing the soft rock, the problem should be tackled more radically, leading to a more effective method of achieving optimizatio
4、n o</p><p> 1. Introduction </p><p> There are many soft rock engineering problems around the world, involving engineering for mines, highways, railways, bridges, tunnels, civil subways, build
5、ings, etc. Engineering losses have occurred because of volumetric expansion, loss of stability of the soft rock, etc. This has been an important question to which much attention has been paid in engineering circles, and
6、in the field of academic rock mechanics. Since the 1970s, considerable research and practical efforts have been made in the f</p><p> It has been found that the soft rock engineering problem involves comple
7、x systematic engineering including such subsystems as classification of soft rocks, judgement concerning the properties of soft rock, project design and construction. Only by considering the integral optimization of the
8、system can we obtain an improved solution to the problem. Hopefully, a radical approach can lead to engineering feasibility, lower costs and engineering stability in order to achieve the engineering objective</p>
9、<p> 1.1. Mechanical properties of soft rock and associated engineering </p><p> Soft rock is an uneven and discontinuous medium. Its strength is low, with a uniaxial compressive strength usually lowe
10、r than 30 MPa. Some soft rocks expand when they are wet. Cracks in some soft rocks will propagate easily — which makes them exhibit volumetric expansion. Large deformation and creep can occur in soft rocks. Many soft roc
11、ks are compound ones which have composite properties formed from two or more sets of constituent properties. Soft rock can be graded into divisions according to </p><p> The mechanical properties of soft ro
12、cks appear so various and different that it is difficult to express them with mathematical formula, which is the technological challenge for soft rock engineering. </p><p> 1.2. Engineering in soft rock and
13、 its optimization </p><p> Because soft rock engineering can induce large deformations, the maintenance of the engineering can be difficult. Moreover, volumetric expansion and loss of stabilization of the s
14、urrounding rock often causes damage to supporting structures. If we use strong supports to control the deformation of the surrounding rock, the engineering cost will be high, and the construction time will be increased b
15、y repeated installation of support, sometimes the support itself has to be repaired. In order to obta</p><p> Design and construction are the two important steps in soft rock engineering. These must begin b
16、y understanding the physical and mechanical properties of soft rock, in the context of the stress field, hydrogeology and engineering geology. The engineering design plan is conceived as a whole according to the theory o
17、f rock mechanics and combining practical data from adjacent or similar projects, including integrating the many factors. The establishment of the correct soft rock engineering system s</p><p> Fig. 1. Engin
18、eering system for soft rock. </p><p> Optimization of soft rock engineering is achieved by making the surrounding rock interface with the supporting structure such that the engineering will be stable. The k
19、ey technological strategy is to avoid a high stress field and enhance the supporting ability of the surrounding rock. Feasible measures are as follows: reducing the external load; optimizing the engineering structure’s s
20、ize and shape, improving planar and cubic layouts of engineering; choosing better strata, and structure orientat</p><p> Fig. 2. The principle of the optimization process. </p><p> According t
21、o these ideas, take the development of a coal mine in soft rock as an example. Integrated optimization of the development system of the mine should take the relevant factors into account: existing information; an overall
22、 arrangement for optimal development and production; eliminate adverse factors; and deal with the problems of soft rock by a simple construction method. The content of the first part of the optimization includes: choosin
23、g the mine development method; deciding on the mi</p><p> Fig. 3. Systematic optimization of coal mining in soft rock. </p><p> 2. Engineering examples </p><p> 2.1. Mine No. 5 i
24、n Youjiang coal mine, China </p><p> The mine is situated to the east of Baise Coalfield, in the West of Guangxi Zhuang Autonomous Region. It belongs to the new third Period. The mine area is located at the
25、 edge of the south synclinal basin. There are three coal layers; the average thickness of each seam is 1–2 m; above and below the coal layers are mudstone, whose colours are grey, greyish white, and green. There are
26、 minerals of mixed illite and montmorillonite in the rock, montmorillonite 5–8%, and illite 7–20%. The rock’s uniaxi</p><p> In the design of the mine, a pair of inclined shafts were included. The level of
27、the shaft-top is +110 m, the elevation of the main mining level is located at ?120 m. Strike longwall mining is planned, arranging with uphill and downhill stope areas, as shown in Fig. 4. </p><p>
28、 Fig. 4. Development plans for Mine No. 5 in Youjiang. </p><p> The first optimization measure is to weaken the strain effect of the surrounding rock in the mine roadway caused by the stress field. Roadway
29、s are arranged as far as possible to be parallel with the maximum principal stress (that is, approximately along the inclined direction) so as to reduce the angle between them. The strike longwall mining is changed into
30、inclined longwall mining, the mine is mined upward by using the downhill stope area, the main mining level is elevated by 20 m, 1131 m of r</p><p> Fig. 5. Development system plans after optimizat
31、ion for Mine No. 5 in Youjiang. </p><p> The second optimization measure is to change the layout of the pit bottom and openings to be parallel with the maximum principal stress as far as possible. The total
32、 length of roadways initially designed was 1481 m, and 30.11% of them were arranged to be perpendicular to the maximum principal stress. After amendment, the total length of roadways is 1191 m, which is a decre
33、ase of 290 m, and with only 24.69% of roadways that are perpendicular to the principal horizontal stress, roadways are easier</p><p> Fig. 6. Layout of the pit bottom and chamber initially designed for
34、 Mine No. 5 in Youjiang. </p><p> Fig. 7. Layout of the pit bottom and chamber after the optimization for Mine No. 5 in Youjiang. </p><p> The third optimization measure is to excavate the sec
35、tion of the roadway in a circular arch shape to reduce the stress concentrations. In order to increase the supporting ability of the surrounding rock itself, after the roadway has been excavated, rockbolts are installed
36、as the first support. Considering the expansivity of the surrounding rock, guniting is not suitable. The secondary support is the use of precast concrete blocks. Between the support and the surrounding rock, the gaps sho
37、uld be </p><p> Fig. 8. Optimization design for the supporting structure of the main roadway for Mine No. 5 in Youjiang. </p><p> The fourth optimization measure is to simplify the chamber lay
38、out so as to reduce the number of roadways. For example, in order to decrease the stress concentrations by the roadway, the number of passageways in the pumproom and the sub-station can be reduced from three to one, and
39、the roadway intersections connecting at right-angles can be reduced from 14 to nine. </p><p> The fifth optimization measure is in accordance with the different stratigraphical lithologies which the roadway
40、s pass through, and for harder rock regions to change the roadway section into a structure with straight-sided semicircular top arch and arc bottom arch, and another structure with a straight-sided horse-shoe arch, so th
41、at the investment of supporting structure can be saved when there are better rock masses with comparatively few fractures. </p><p> In construction, waterproofing and draining off the water should be implem
42、ented, and the catchment in the roadway bottom should be strictly prevented because it may cause the bottom rock to expand. When the opening groups are excavated, the construction sequence must be considered, enough rock
43、 pillar must be reserved, and the construction method of ‘short-digging and short-building’ must not be used, so that the interactions can be avoided. </p><p> By the optimization described above, after the
44、 roadways have been constructed, the serviceable roadway is 95.5% of the total, 55.5% more than that of the adjacent mine No. 4. The length of the roadway was reduced, and ¥3,700,000 ($450,000) saved. In addition, &
45、#165;3,000,000 ($360,000) was saved in the maintenance costs of the roadways before the mine was put into production, so, the cost saving totals ¥6,700,000 ($810,000) in all. After the mine has been turned over to p
46、roduction, the main designed </p><p> 2.2. The coal mine at Renziping, China </p><p> The mine lies to the south of Qinzhou coalfield in Guangxi Zhuang Autonomous Region. It belongs to the new
47、 third Period and synclinal coal basin tectonics. There are two coal layers in it, the main seam thickness is 12–15 m. The roof and floor of the coal layers are arenaceous–argillaceous rocks, whose colour is greyish
48、 white, and whose essential minerals are quartz and kaolinite. The uniaxial compressive strength of the rock is from 10 to 15 MPa. Rock masses are quite integral with fractures on</p><p> Through on-the-spo
49、t observations, it is apparent that the coalfield is affected by the tectonic stress field, that the deformation in the soft rock is serious, and is larger than that caused only by the vertical stress component. The tech
50、nological reformation measures for the mine are proposed as follows. </p><p> The first measure is to extend the depth of the shaft and abandon the main roadway excavated along the strike, and transform it
51、into a bottom panel stonedoor along the synclinal basin minor axis to make it parallel with the main principal horizontal stress. The mining face can be laid on top of it. The force endured by the stonedoor is quite smal
52、l, and the stonedoor is easy to maintain, as shown in Fig. 9. </p><p> Fig. 9. Contrasting layouts before and after optimization at the coal mine in Renziping. </p><p> The second measure is t
53、o select an improved stratum to lay out the stonedoor. If it is placed in the grey arenaceous–argillaceous rock, its uniaxial compressive strength is 15 MPa and is easy to maintain, constructing in the normal excavation
54、manner, and supported with a granite block building body. </p><p> After the mine was constructed, the maintenance of the stonedoor was in a better state, the serviceability rate of the roadway was raised t
55、o 85%, which is 45% more than that before the optimization. The haulage and ventilation of the mine were also improved, to enhance the normal production. The coal production of the mine has surpassed the designed capacit
56、y, the loss has been reversed and the mine has been transformed to a profitable enterprise. </p><p> 3. Conclusions </p><p> Soft rock engineering for coal mining involves many complex factor
57、s. Unable to solve the problems completely by quantitative means, much of the engineering relies on feedback after observation on the spot. The technique described in the paper — of systematic decomposition of the system
58、 into the component elements, individual optimization and then synthesis into overall optimization — has achieved good results in practice, as illustrated by the three coal mine examples. </p><p> In fact,
59、the basis of the technique is the process of applying basic rock mechanics principles, such as orienting roadway tunnels to be parallel to the maximum horizontal principal stress and avoiding complex excavation shapes. T
60、his involves major changes to coal mine layouts and thus represents a strategy of taking radical measures to solve soft rock engineering problems. If such radical measures are taken together with holding stopgap measures
61、, the soft rock engineering can be optimized.</p><p> 煤礦開采中的軟巖優(yōu)化工程</p><p><b> 摘要</b></p><p> 軟巖工程是一個已引起廣泛關注的巖石力學與工程領域中的困難課題。 研究和實際工作已經(jīng)進行, 但是大部分的工作局限于解決表面的問題。 為克服大變形及長
62、時效應, 必須解決軟巖穩(wěn)定性難題, 形成一個更有效的軟巖優(yōu)化工程系統(tǒng)。本文簡要介紹了基于工程實踐中的軟巖優(yōu)化程序。</p><p><b> 1. 前言</b></p><p> 在世界各地有不少軟巖工程問題,涉及礦山,公路,鐵路,橋梁,隧道, 建筑等。因為軟巖體積膨脹,失去穩(wěn)定性而引發(fā)的工程等方面的損失已經(jīng)發(fā)生,這是一個巖石力學領域一直重視的問題。 70年代以來
63、, 各個國家在軟巖工程領域投入了大量的研究和實踐,但主要精力都集中在設計和加固支撐結構,測量和分析巖石的物理力學性能指標,工程施工方法與巖石結構關系等方面。 </p><p> 在已經(jīng)發(fā)現(xiàn)的軟巖工程問題中,涉及到復雜的系統(tǒng)工程包括軟巖系統(tǒng)分類,軟巖工程設計與施工。 只有考慮到整體系統(tǒng)的優(yōu)化,才能取得更好的解決辦法。一個優(yōu)化的方式,可以降低工程成本,提高工程穩(wěn)定性,以實現(xiàn)工程目標。 </p><
64、;p> 1.1. 軟巖力學性質(zhì)及相關工程</p><p> 軟巖是一個不平衡的連續(xù)介質(zhì)。 其強度低,單軸抗壓強度通常低于30 MPa。 有些軟巖濕度增加時體積擴大。在一些軟巖中裂縫較發(fā)育,導致巖石體積膨脹, 發(fā)生大變形和蠕變。 許多軟巖是由兩種或多種不同巖性巖石組成的復合型軟巖,可依據(jù)巖石性能劃分等級。 由于軟巖強度低, 應力場靈敏度高,礦物質(zhì)遇水膨脹后,軟巖體積擴大 ,能迅速產(chǎn)生大的收斂變形和時效變形
65、, 導致圍巖的破害。</p><p> 從軟巖的力學性能來看,用數(shù)學公式精確描述其眾多性能參數(shù)的變化規(guī)律,是軟巖工程技術上的極大的挑戰(zhàn)。 </p><p> 1.2. 軟巖工程及其優(yōu)化 </p><p> 在軟巖中進行施工,能促使巖體產(chǎn)生大變形,維修的工程也很困難。 此外,巖石體積膨脹, 往往造成巖體支撐結構損壞,圍巖喪失穩(wěn)定性。如果采用強力支撐,以控制變形的
66、圍巖, 將增加建造時間,提高工程成本, 有時支撐系統(tǒng)本身已經(jīng)得到修復,而形成重復支撐。 為了簡化施工,降低成本,從而獲得最大效益,必須全面地、有系統(tǒng)地進行優(yōu)化。 </p><p> 在軟巖工程的設計與施工中必須了解軟巖的物理和力學性能,及圍巖應力場,水文地質(zhì)與工程地質(zhì)條件。 工程設計方案是根據(jù)相鄰或相近巖石力學數(shù)據(jù)與實踐相結合,整合多種因素,產(chǎn)生的一個整體的構想。正確的軟巖工程系統(tǒng)建立在實踐中掌握的各種因素之上
67、 。設計流程如圖1 。 </p><p> 圖 1 軟巖工程系統(tǒng)</p><p> 軟巖優(yōu)化工程是通過支護結構改變圍巖性質(zhì),使工程趨于穩(wěn)定。 其關鍵技術,是避免高應力場和提高圍巖的支撐能力。 可行的措施如下:減少外部荷載; 優(yōu)化工程的結構大小和形狀, 加強工程平面和立體布置; 選擇具有更好結構和方向的地層,等,如圖2 。 </p><p><b>
68、 圖2 優(yōu)化原理 </b></p><p> 根據(jù)上述思路,以一個在軟巖地質(zhì)條件下的生產(chǎn)煤礦為例。對礦井進行發(fā)展系統(tǒng)的綜合優(yōu)化,應考慮相關的因素:實際情況;最佳的開發(fā)和生產(chǎn)計劃; 消除不利因素; 用簡單的方法處理軟巖問題。設計第一部分的優(yōu)化包括:選擇礦山開拓方式; 劃分開采水平; 并確定主要運輸系統(tǒng)的位置。 同樣重要的是合理的安排巷道和硐室的位置,設法減少工程之間造成的相互干擾。 水平主應力的開口
69、垂直方向應避開運輸路線。 回采巷道的布置應減少開采引起的移動荷載所造成的支持結構的損傷。 進一步優(yōu)化因涉及到線路的幾何形狀、尺寸大小、支承結構及施工工藝和方法。 最后,通過測量和施工監(jiān)控, 及時反饋信息,確保工程按預定的計劃進行, 如果有任何偏差, 可及時采取糾正措施。系統(tǒng)顯示如圖 3 。 </p><p> 圖3 軟巖中的煤炭開采系統(tǒng)優(yōu)化</p><p><b> 2 .
70、 工程實例 </b></p><p> 2.1. 中國右江五號煤礦</p><p> 煤礦坐落于廣西壯族自治區(qū)百色煤田東部。屬于三疊紀。 礦區(qū)位于南向斜盆地的邊緣。 有3層煤; 各煤層平均厚度1-2米; 煤層頂?shù)装寰鶠槟鄮r,其顏色是灰色,灰白色,綠等。巖石中混合蒙脫石和伊利石,蒙脫石占5-8%,伊利石占7-20%。 巖石的單軸抗壓強度是4-5 MPa,平均為4.8 MPa。
71、巖石裂隙較發(fā)育,且不分布規(guī)則,。巖心質(zhì)量指標是0.55 。 大部分的裂縫之間無膠結物填充。 圍巖受流水侵蝕,強度降低,完全破碎。煤田走向延伸,傾角煤層是10-15 °, 礦區(qū)走向長6公里的, 傾向約1公里,面積為6平方公里,可采儲量是4,430,000噸。 在相鄰四號礦井,最大主應力為北北東-南南西,大致沿煤層的傾斜方向。 巷道垂直于這個方向的收斂值70-100毫米,巷道支護破壞程度是51% 。巷道平行于最大主應力的收斂值為2
72、0-40毫米, 支護損壞程度是12% , 煤礦平均支護損壞程度為40%。</p><p> 在礦井的設計中,考慮一對斜井開拓。水平軸頂部是110米,主要開采水平設在-120米。走向長壁上下山開采,如圖4 。</p><p> 圖4 右江五號煤礦發(fā)展計劃 </p><p> 第一優(yōu)化措施是為了削弱巷道所受到的圍巖應力應變的影響。 巷道盡可能平行與最大主應力(即
73、大致沿傾斜方向) ,減少夾角。走向長壁開采改為傾斜長壁開采, 煤礦開采是使用下山開采, 主采水平提高了20米,少掘巷道1131米,減少了掘進費用,以及設施費用,節(jié)?。?,760,000 ( 33.66萬美元)。新系統(tǒng)是見圖5 。 </p><p> 圖5 系統(tǒng)優(yōu)化后右江5號煤礦發(fā)展計劃 </p><p> 第二項優(yōu)化措施,改變井底硐室布局方式,盡量作到簡潔,硐室的開口應平行于最大主應力
74、方向。 最初設計總長度是1481米, 其中30.11 %垂直于最大主應力 。 修改后的巷道總長度是1191米,即減少了290米,只有24.69 %的巷道垂直于主水平應力,巷道容易維護。 如圖6 , 如圖 7 。 </p><p> 圖6 右江第5礦井井底車場的初步設計 </p><p> 圖7 優(yōu)化后右江第5礦井井底車場</p><p> 第三優(yōu)化措施是采用圓
75、拱形狀井筒斷面,以減少應力集中。 井筒開鑿后,為了提高圍巖本身的支撐能力 ,采用錨桿及時支護??紤]圍巖的膨脹性,噴射混凝土并不適合。二次支護采用澆注混凝土?;炷梁蛧鷰r之間采用石灰粉混合砂土填充。這就產(chǎn)生了分散壓力的效果,圍巖變形時起到緩沖作用, 同時,它抑制軟巖吸水膨脹。計劃見圖 8 。</p><p> 圖8 右江5號煤礦主要巷道支撐結構的優(yōu)化設計 </p><p> 第四優(yōu)化措
76、施,是為了簡化井下硐室布置,以縮短線路 比如,為了減少硐室產(chǎn)生的應力集中,水泵房及變電所,可以從三個減少到一個,巷道交叉口的連接數(shù),可以從14個下降到9個 。 </p><p> 第五優(yōu)化措施,是按照巷道通過的不同地層的巖性, 在通過困難地區(qū)改變巷道斷面形狀改成一個結構簡單的半圓拱形或另一種結構簡單的馬蹄型拱,可以減少巷道周圍巖體相對折斷, 從而節(jié)省對支撐設備的投資,。 </p><p>
77、; 在硐室及巷道, 應實施防水及排水措施, 嚴格禁止硐室以及巷道底部集水,因為它可能導致底部巖石膨脹變形。 當確定開鑿的施工順序后,必須考慮保留有足夠的巖柱; 不得采用的短挖短建的施工方法,以避免相互作用。 </p><p> 通過優(yōu)化設計, 已建成的巷道中95.5%可較好的使用 ,其中 55.5%以上的巷道使用期大于相鄰四號礦井。減少了巷道長度,節(jié)省¥ 3,700,000 ( $ 450,000
78、)。 此外, 礦井投產(chǎn)前巷道維修費用節(jié)省了¥ 3,000,000 ( 360,000元) ,所以 節(jié)約成本總計¥ 6,700,000 ( $ 810,000 ) 。煤礦投入生產(chǎn)后,當年達產(chǎn),加上節(jié)省下來的巷道生產(chǎn)期間維修費用,共有¥ 8,700,000 ( $ 1,050,000 )。</p><p> 2.2. 中國稔子坪煤礦</p><p> 煤礦位于
79、廣西壯族自治區(qū)欽州南部,它屬于第三紀向斜盆地構造。 含兩個煤層,其主要煤層厚度為12-15米。 煤層的頂?shù)装鍨樯澳噘|(zhì)巖,其顏色是灰白色, 其主要礦物是石英和高嶺石。 單軸抗壓強度從10- 15Mpa。 巖體相對完整只有部分地區(qū)較破碎。屬于軟弱圍巖, 軟膨脹,強度較低,是易破碎。 煤田盆地附近有約8公里長, 1.5公里范圍的斷層。 斜坡上變化較大,邊角度25-40 °。煤田的底部較為平緩。受構造應力影響,在煤田南部有一個NW-S
80、E方向逆斷層。煤礦已開發(fā)并投入生產(chǎn)后, 礦山采用上下山開采,250米主運巷道沿走向延伸。受巖石應力應力影響,許多地方的主要巷道已經(jīng)破裂,支護被打破,部分已壓出,巷道的可用率小于40% , 這嚴重影響了煤礦的運輸與通風。在經(jīng)過10多年的生產(chǎn), 沒有達到額定產(chǎn)量且有虧損情況發(fā)生,導致經(jīng)濟損失。 </p><p> 通過現(xiàn)場觀察,該煤田受構造應力場影響明顯,垂直應力分量造成軟巖嚴重變形, ,為礦井提出的技術改造措施建
81、議如下: </p><p> 第一項措施是將增加深度的豎井,放棄沿走向布置的主要巷道,采用平行向斜盆地短軸的巷道,其主要受橫向壓力。采煤工作面,可以布置在巷道之上。 巷道經(jīng)受的巖石壓力很小,且巷道易于維護,如圖9 。</p><p> 圖9 煤礦布局優(yōu)化前后的對比</p><p> 第二招則是將石門置于良好的地層。如果我們把它放置于單軸抗壓強度為15 MPa
82、灰色砂質(zhì)泥巖中, 以正常的施工方式建設,并用花崗石做支護,將有利于維護。</p><p> 礦井經(jīng)過優(yōu)化建設,維修后的石門處于一個較好的狀態(tài),巷道的服務率已提高至85% ,即比優(yōu)化前增加了45%以上。礦井的運輸和通風狀況也都有了改進,煤礦生產(chǎn)進行正常。礦井的煤炭產(chǎn)量已超過設計能力,虧損狀況已得到扭轉,煤礦已轉變?yōu)橼A利性企業(yè)。</p><p><b> 3. 結論</b&
83、gt;</p><p> 煤礦開采中的軟巖工程,涉及很多復雜的因素。完全采用定量手段, 解決不了的問題, 大部分的依靠工程現(xiàn)場實測后的反饋。上述兩個煤礦的例子,描述了將系統(tǒng)分解為個體組成, 個體優(yōu)化后,合成為整體優(yōu)化,取得了良好的實踐成果。 </p><p> 事實上,該技術的實際運用過程中, 如使巷道平行與最高水平主應力及避免復雜的巷道、硐室的開鑿,這涉及到改變煤礦的戰(zhàn)略布局,采取相
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 采礦工程本科畢業(yè)設計外文翻譯--煤礦開采中的軟巖優(yōu)化工程(節(jié)選)
- 采礦工程本科畢業(yè)設計外文翻譯--煤礦開采中的軟巖優(yōu)化工程(節(jié)選)
- 采礦工程本科畢業(yè)設計
- 采礦工程本科畢業(yè)設計
- 煤礦采礦工程畢業(yè)設計
- 煤礦采礦工程畢業(yè)設計
- 采礦工程本科畢業(yè)論文
- 采礦工程本科畢業(yè)論文
- 采礦工程畢業(yè)設計--礦體開采設計
- 采礦工程本科畢業(yè)設計 劉橋二礦
- 采礦工程地下開采畢業(yè)設計
- 采礦工程畢業(yè)設計--煤礦礦井設計
- 采礦工程畢業(yè)設計
- 采礦工程畢業(yè)設計
- 采礦工程畢業(yè)設計
- 采礦工程本科畢業(yè)論文 (2)
- 采礦工程本科畢業(yè)設計木城澗井田
- 煤礦開采工程設計 采礦工程專業(yè)畢業(yè)論文
- 采礦工程本科畢業(yè)設計指導書定稿
- 采礦工程畢業(yè)設計
評論
0/150
提交評論