自動化專業(yè)畢業(yè)設計外文翻譯--輸入力矩受限的機器人魯棒自適應控制_第1頁
已閱讀1頁,還剩16頁未讀 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

1、<p><b>  外文文獻原文</b></p><p>  Limited torque input Robust Adaptive Tracking Control of Robot</p><p><b>  Abstract</b></p><p>  Based on input constraints

2、, a novel robust-adaptive tracking control algorithm is proposed for robot manipulators since stability if the standard adaptive control system is problematic when some disturbance exists. The proposed controller stabili

3、zes the system with some disturbance and guarantees asymptotic stability in the case if non-disturbance. Robust-adaptive algorithm can be received as the extension of the conventional adaptive scheme. The estimated param

4、eters enter the controller non-lin</p><p>  Keywords: Adaptive control; robot manipulator; parametric uncertainties; robust-adaptive;</p><p>  So far, almost all of the controller design is base

5、d on joint drive to produce any torque on the basis of; and is subject to the physical conditions, the output of the drive torque is limited, so the controller may lead to the control failure or deterioration of the qual

6、ity control.Therefore the controller design must take into account the limited joint drive dynamic capability. For example, the operation of the industry to help the robot, some parameters are uncertain or unknown,

7、adaptive </p><p>  MANIPULATOR DYNAMIC MODEL</p><p>  AND CHARACTERISTIC MODEL</p><p>  Consider a robotic manipulator with n degrees of freedom. The continuous Lagrange dynamic mod

8、el is given by</p><p>  Where q∈R n and ∈R n are the vector of generalized joint coordinates and velocity coordinates, respectively. The inertia matrix M(q)-MT(q)> 0 ,and there exist two constant positiv

9、e scalars M min and M max such that ≤ ≤, is the vector of commanded generalized force, and and G(q) are the terms due to Carioles, Centripetal and gravity forces. In actual application, the uncertain parameters and un-m

10、odeled dynamics usually exist in the established dynamic model in (1).</p><p>  When the sample time is small enough, at instant t=k􀀅q and can be approximated by</p><p><b>  and .

11、</b></p><p>  Respectively Using the above relationships the discrete-time representation of (1) becomes</p><p><b>  (2a)</b></p><p>  Premultiplying (2a) by resul

12、ts in </p><p><b>  where</b></p><p><b>  ,</b></p><p>  and I denotes the unitary diagonal matrix with an appropriate dimension.</p><p>  If the

13、 designed is continuous in t ,q and , then the solution (q,) of (1) will be continuously differentiable. Let and be ij-th element of matrix ; We define </p><p>  and then ΔF1(k) can be expressed as</p&g

14、t;<p>  For the ij-th element Δf1,ij(k) of matrix ΔF1(k)</p><p>  we can get</p><p><b>  = </b></p><p><b>  = </b></p><p>  with 0≤≤1,an

15、d,≈1 for a small sample time Ts . From (3), it can be seen that ΔF1(k)→0 as Ts converges to zero in a compact set of .Similar properties can also be achieved for the coefficient matrixes f2(k), and β (k) .</p><

16、;p>  In a compact set of, the following properties can be deduced from (3) and the expressions of the coefficient matrixes of (2b):</p><p>  Property 1: If the sample time Ts is small enough,then all coef

17、ficient matrixes of (2b) are slowly time varying;</p><p>  Property 2: f1(k)→2I,f2(k)→ ?I and f1(k)+f2(k)→I, as the sample time Ts converges to zero. Then we can define the discrete equation (2b) with Prope

18、rties 1 and 2 as the robotic manipulator characteristic model.</p><p>  MULTI-VARIABLE GSA CONTROLLER </p><p>  WITH NN COMPENSATION</p><p>  Discrete equation (2b) can be expressed

19、 as follows:</p><p><b>  (4)</b></p><p><b>  Where</b></p><p><b>  ,</b></p><p><b>  ,</b></p><p>  e(k) de

20、notes the vector of white noise with zero mean. In the case of ≡0, and can be reduced to</p><p>  Then the elements of q(k +1) can be expressed as </p><p><b>  (5)</b></p>&

21、lt;p>  where i = 1,…,n, (k+1)) is the element i of q(k +1), is the element i of e(k) and is the column i of the matrix </p><p><b>  . </b></p><p>  When the coefficient matrixes

22、are unknown, it can be estimated by</p><p>  =π (q(k),q(k?1),...,u(k?1),...) , (6a)</p><p>  where is the estimated coefficient matrix of Θ(k) at the instant t=kTs , and denotes an

23、 estimation operator. Considering the coefficient matrixes of the characteristic model being slowly time-varying, we can obtain the selected estimation operator by the weighted least squares method (WLS)[13], namely <

24、/p><p><b>  ,</b></p><p>  with λ(k+1)=μ0λ(k)+(1?μ0), 0<μ0 ≤1, and the column i of the matrix.</p><p>  Given a desired smooth trajectory , the adaptive control contro

25、ller is designed as follows </p><p><b>  (7)</b></p><p>  with the feed forward control law designed as</p><p><b>  (7a)</b></p><p>  and the mu

26、lti-variable GSAC feedback law as</p><p><b>  (7b)</b></p><p>  where is the tracking error andε(k) >0 is a small scalar that avoids the estimated matrix being singular. The term

27、 of will be designed later; L1 and L2 are golden-section coefficients, that is,</p><p><b>  , ,</b></p><p>  which satisfy the relationship L1+L2=1 and </p><p>  Sub

28、stituting (7) into (2), we can get</p><p><b>  (8)</b></p><p>  and .Defining the tracking filtered error s(k +1) as and using the relationships L1+L2=1 and , (8) can be expressed as

29、</p><p>  = (9)</p><p><b>  Which</b></p><p>  Assuming , , and </p><p>  ,if is selected as</p><p>  then Δ(k) = 0 , and then (9) ca

30、n be written as</p><p><b>  (10)</b></p><p>  Since in Property 2 as Ts → 0 in a compact set of, a small sample time Ts can be selected such that the inequality can be satisfied. Th

31、erefore, the tracking filtered error s(k) asymptotically converges to zero in this case. The convergence of s(k) to zero in turn guarantees the convergence of q(k) to zero. Because of the dynamics of the estimator and th

32、e time-varying coefficients of the characteristic model, it is almost impossible to satisfy the above assumptions. Therefore, we can design a su</p><p><b>  (11)</b></p><p>  where

33、is the estimate of Δ(k) .</p><p>  Assuming Δ(k) is smooth enough and bounded, it then can be approximated by the linearly parameterized NN to any required degree of accuracy [6,14]. Then the element Δi(k) o

34、f Δ(k) can be expressed as</p><p><b>  (12)</b></p><p>  where i= 1,…n, is the column i of the optimal NN weight matrix,.Activation functions</p><p>  represent the bas

35、is function vector, which can be selected as any one of Gaussian radial basis, B-spine basis, Wavelet basis, and etc. [14], and δi (k) denotes the element I of the NN reconstruction error vectork δ(k), namely</p>

36、<p><b>  .</b></p><p>  Using compensation control law , (9) can be written as</p><p><b>  (13)</b></p><p>  Where is the estimate of , and </p>

37、<p>  An estimate is now obtained by minimizing the cost function</p><p><b>  (14)</b></p><p>  After substituting (13) into (14), the gradient of the cost function in (14) is

38、 derived as</p><p><b>  (15)</b></p><p>  According to the gradient descent method the NN weight adaptation law can be designed as</p><p><b>  (16)</b></p

39、><p>  with α > 0 . Then the compensation control law in (11) can be written as</p><p><b>  (17)</b></p><p>  In view of the case the term can be simplified as</p&

40、gt;<p>  4. SIMULATION RESULTS</p><p>  Consider a planar, two-link, articulated manipulator as in [3] (as presented in Fig. 1), whose dynamics can be written explicitly as</p><p><b&g

41、t;  Where</b></p><p><b>  With,</b></p><p><b>  ,,</b></p><p><b>  and .</b></p><p>  In the simulation, the sample time Ts =

42、2ms, the initial values and the parameters of the estimator and the controller are selected as P(0) =1×I,λ(0) = 0.96 , μ0 = 0.98 , the anti-singularity factors (k) can be designed as ε(k) =5×exp(?kTs).</p>

43、;<p>  According to the Property 2, the initial estimate values of the characteristic model coefficient matrixes are chosen as </p><p>  A basis set of activation function y(k) can be selected as in t

44、he Random Vector Function Link net [16], namely,</p><p><b>  (19)</b></p><p>  with V a randomly selected matrix and X(k) the NN input vector. can be chosen as the hyperbolic tangen

45、t function, and X(k) can be taken as</p><p><b>  ?? .</b></p><p>  The adaptation gain for the NN weight tuning is taken as α = 0.005 , and the initial values of the weights are set

46、to zeros.</p><p>  The desired trajectory is chosen as</p><p><b>  (20)</b></p><p><b>  外文翻譯</b></p><p>  輸入力矩受限的機器人魯棒自適應控制</p><p>

47、<b>  摘要</b></p><p>  在輸入力矩受限的情況下,提出一種全的簡單魯棒自適應控制算法。當參數的估計范圍包含其真實值時,證明了閉環(huán)系統的漸進穩(wěn)定跟蹤;當有干擾存在,常規(guī)參數估計自適應控制算法不能實現穩(wěn)定控制時,本算法仍然使系統穩(wěn)定。在本算法中,所估計的參數在跟蹤控制前饋項中表現為非線性,這是區(qū)別于常規(guī)參數估計自適應算法的一個最重要特征。因此本算法控制器的設計更有靈活性,另一

48、方面獲得更好的控制品質和魯棒性,特別是對參數估計域軌跡誤差即參數估計崔無的強魯棒性,均為仿真算例所驗證。</p><p>  關鍵詞:自適應控制;自適應系統;機器人;魯棒自適應控制;輸入力矩受限 </p><p><b>  1 前言</b></p><p>  迄今為止,幾乎所有控制器設計都建立在關節(jié)驅動器能產生任意力矩的基礎上;而實際上受物

49、理條件限制,驅動器的輸出力矩是有限的,這樣的控制器可能導致控制失敗或控制品質的惡化。因此控制器的設計必須考慮到關節(jié)驅動器的有限動能力。</p><p>  對于例如幫運作業(yè)的機器人,有些參數是不確定或者不可知的,基于估計參數自適應控制是處理此類問題的主要控制策略之一,利用機器人動力學方程的線性參數化性質,通過一個積分運算估計機器人參數。由于積分環(huán)節(jié)的作用,在持續(xù)干擾條件下,控制系統不容易穩(wěn)定,因此適當限制或調整積

50、分環(huán)節(jié)的作用是實現自適應系統穩(wěn)定的一個有效手段。能把估計參數限制子啊所規(guī)定的范圍內,從而提高了自適應控制系統的魯棒性。但這種算法有六個開關組成,稍微復雜,而且當真是參數不在所規(guī)定的范圍內時,它不能給出系統控制品質及其魯棒性等信息。</p><p>  本文提出一種簡單的魯棒自適應控制算法,當估計參數域包含參數真實值時,閉環(huán)系統實現漸進穩(wěn)定跟蹤;當存在干擾或估計參數域不含參數真實值即有誤差時系統是穩(wěn)定的。</

51、p><p>  2.機械手的動態(tài)模型和特征模型</p><p>  考慮機械手與N自由度。連續(xù)拉格朗日動態(tài)模型[ 1-3 ]是由</p><p><b>  (1)</b></p><p>  其中q ∈Rn和∈R n 分別為都N的矢量廣義的聯合坐標和速度坐標系。慣性矩陣M(q)-MT(q)> 0,存在兩個常數正面標米

52、M的最小值和最大值,如≤≤,是載體的指揮廣義力,和G(q)是哥氏力矩和重力力矩。在實際應用中,不確定參數和聯合國的動力學模型,通常存在于既定的動態(tài)模型</p><p>  當樣品的時間是夠小,在即時可分別逼近</p><p><b>  和 .</b></p><p>  使用上述的關系,離散時間的代表性( 1 )成為</p>&

53、lt;p><b>  (2a)</b></p><p><b>  把代入(2a)得 </b></p><p><b>  (2b)</b></p><p><b>  其中</b></p><p><b>  ,</b><

54、;/p><p>  同樣,I 指單一的對角矩陣與一個適當的層面,如果設計 (0.2)是連續(xù)的在T中,那么結果就是 (q, ) of (1).就要持續(xù)將 and 成為ij-th 要素矩陣 ; 我們可以界定</p><p>  然后 ΔF1(k) 可以表達為</p><p>  對于 ij-th 元素 的矩陣ΔF1(k)</p><p><

55、b>  我們可以得到</b></p><p><b>  = </b></p><p>  = </p><p>  當 0≤≤1,and,≈1 對于一個小樣本的時間 Ts .從(3)得到, 它可以被看作為 ΔF1(k)→0 當Ts 趨近于零在在一個緊湊的設置 中. 類似的性能也可以達到為系數

56、矩陣 f2(k), and β(k) .在一個緊湊的一套, 下列屬性可以推斷,從(3)和表達的系數矩陣(2b)條:</p><p>  所有物1: 如果樣品時間 Ts 足夠小,那么所有系數矩陣(2b)條的時間正在慢慢變;</p><p>  所有物2: f1(k)→2I,f2(k)→ ?I 和 f1(k)+f2(k)→I, 當樣品時間Ts 趨近于零. 然后我們可以定于離散方程(2b)與性

57、能的第一和第二款作為機械手特征模型。</p><p>  3多變量GSA的控制器與神經網絡補償</p><p>  離散方程(2b)條可表示為如下</p><p><b>  (4)</b></p><p><b>  當</b></p><p><b>  ,&l

58、t;/b></p><p><b>  ,</b></p><p>  e(k)是指載體的白噪聲與零的意思. 在 ≡0, and 的情況下可以減少到</p><p>  然后元素 q(k +1) 可以表示為</p><p>  (5) 當 i = 1,…,n, (k+1)) 是q(k +1)的元素i, ei(k)

59、 是o e(k)的元素i, 并且θi(k) 是矩陣中的圓柱</p><p><b>  i . </b></p><p>  當系數矩陣都是未知,可以估計為=π (q(k),q(k?1),...,u(k?1),...) , (6a)</p><p>  當 是Θ(k)在當時估計的系數矩陣 t=kTs , and

60、 意味著 操縱者的意愿??紤]到系數矩陣的特征模型的時間正在慢慢變,我們可以獲取選定的估計運營商的加權最小二乘法 (WLS)[13],</p><p><b>  ,</b></p><p>  當 λ(k+1)=μ0λ(k)+(1?μ0), 0<μ0 ≤1, and matrix圓柱 i .鑒于預期的順利軌跡 , 自適應控制控制器的設計如下 </p>

61、;<p>  (7) 當前饋控制律設計</p><p><b>  (7a)</b></p><p>  并且和多變量gsac反饋法</p><p><b>  (7b)</b></p><p>  當 是跟蹤誤差,并且ε(k) >0 是是一個很小的標量,避免估計矩陣 存在差異.

62、 在這個期間 將稍后設計; L1 和L2 是黃金分割系數, 這就是:</p><p><b>  , ,</b></p><p>  并將滿足L1+L2=1 和 </p><p>  從而取代 (7) 進入 (2), 我們可以得到</p><p>  和 . 確定跟蹤過濾錯誤 s(k +1) 并且運用其中的關心L1

63、+L2=1 和 , (8) 將被表達為</p><p><b>  =</b></p><p><b>  當</b></p><p><b>  假設, , 和</b></p><p><b>  ,if 被選定為</b></p><

64、;p>  然后 Δ(k) = 0,再(9) 可以被寫作</p><p><b>  (10)</b></p><p>  當在所有物2 as Ts → 0 在一個緊湊的設置, 在一個小樣本時間Ts 中可以選擇不平等可以得到滿足。故在跟蹤過濾錯誤 s(k) 在這種情況下趨近與零.收斂性的 S(k)至零,從而保證了收斂的Q(k)至零。由于動態(tài)的估計和隨時間變化

65、的系數特征模型、它幾乎是不可能的,以滿足上述假設。</p><p>  因此,我們可以設計一個適當的補償控制法,以避免可能的情況出現,控制性能惡化,或該閉環(huán)系統是不穩(wěn)定的,甚至因估計錯誤。因此,設計為</p><p>  (11) 當 是 Δ(k)的估計值 .</p><p>  假設Δ(k)能夠的順利進行和范圍內,這樣它就能被近似線性參數神經網絡的任何所需的準確度

66、。</p><p>  然后元素Δi(k) of Δ(k) 可以表達為</p><p>  (12) 當 i= 1,…n, is 是圓柱體i的最優(yōu)神經網絡的權重矩陣,,.激活功能代表基函數向量,它可以選擇任何一高斯徑向基,B樣條的基礎和小波巴斯等等。</p><p>  [14], 并且δi (k) 表示 元素 i 在神經網絡誤重建差量 k δ(k)</

67、p><p><b>  .</b></p><p>  使用補償控制定理 , (9) 可以被寫成為</p><p><b>  (13)</b></p><p>  在 是 的判斷, 并且 </p><p>  對 的估計已經 通過最小化成本函數得到了</p>&

68、lt;p><b>  (14)</b></p><p>  把(13)代入(14)之后,梯度成本函數在(14)導出</p><p><b>  (15)</b></p><p>  根據該梯度下降法神經網絡的重量適應的定理可以設計為</p><p><b>  (16)</b&

69、gt;</p><p>  當 α > 0,那么補償控制定理在(11)可以被寫成為</p><p><b>  (17)</b></p><p>  鑒于這個例子 之時 可以簡化為</p><p><b>  4.仿真結果</b></p><p>  考慮一個平面,兩

70、個環(huán)節(jié),闡述了機械手的作為,在(3)(如圖一介紹), 其動態(tài)可以書面明確為</p><p><b>  當</b></p><p><b>  其中</b></p><p><b>  ,</b></p><p><b>  ,,</b></p>

71、;<p><b>  and .</b></p><p>  在模擬設計中,樣本時間 Ts = 2ms,初始值和參數估計和控制器的選定為P(0) =1×I,λ(0) = 0.96 , μ0 = 0.98 , </p><p>  反奇異因素ε(k) 可以被描述為 ε(k) =5×exp(?kTs).</p><p

72、>  根據所有物2, 初步估計值的特征模型的系數矩陣選擇</p><p>  一個基礎的一系列激活函數y ( k )項可以選擇,因為在隨機向量函數的聯系網, [ 16 ] ,即 </p><p><b>  (19)</b></p><p>  與V隨機選取矩陣和和X(k) t神經網絡的輸入向量??梢员贿x擇為雙曲正切函數X(k) 可作為&

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論