版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 外文資料原文</b></p><p> OLED-Polypropylene Bio-CD Sensor</p><p> Srikanth Vengasandra, Yuankun Cai, David Grewell, Joseph Shinar, and Ruth Shinarc</p><p> De
2、partment of Agricultural & Biosystems Engineering</p><p> Ames Laboratory - USDOE and Department of Physics & Astronomy</p><p> Microelectronics Research Center and Department of Elect
3、rical and Computer Engineering</p><p> Iowa State University, Ames, IA 50011, U.S.A</p><p><b> ABSTRACT</b></p><p> With the goal of developing microfluidic platforms
4、 for sensing applications, flash-free micro patterns were embossed in polypropylene surfaces with ultrasonic heating for a biosensing application. The embossed features were designed to act as reservoirs, valves, and rea
5、ction chambers to allow, in combination with a compact sensing platform, the monitoring of analyte levels using a standard PC-CD player. To generate the compact sensor, as an example, we chose the photoluminescence (PL)-
6、based dete</p><p> Keywords: Organic light-emitting diode, OLED, lab-on-a-CD, glucose sensor, lactate sensor</p><p> 1. INTRODUCTION</p><p> Biomedical micro electromechanical sy
7、stem (MEMS)-based sensing platforms fabricated on plastic substrates have the potential of e.g., being low cost, disposable, cross-contamination free, and sensitive. Additionally, such sensors show promise for high throu
8、ghput and multianalyte detection. The advantages of such a lab-on-CD-based biosensing platform include its simplicity in terms ofusage for a wide range of solutions, versatility in terms of multianalyte detection feasibi
9、lity, andcompact size. </p><p> This paper describes the use of ultrasonic micro-embossing to generate microfluidic channels, valves, reservoirs, and reaction chambers in a polypropylene (PP) PC compact dis
10、c (CD). The ultrasonic micro-embossing was used as a source of localized heat. The advantages of this technique include short cycle times, ease of de-embossing and low residual stresses. Moreover, this approach is applic
11、able to batch and continuous manufacturing, and it is simpler relative to the more common fabrication meth</p><p> As shown in this work, the CD can be integrated with a photoluminescence (PL)-based OLED se
12、nsing platform to generate a compact device for monitoring e.g., lactate and glucose. The CD materials are typically of relatively low surface energy making them hydrophobic. However, many of the functions of microfluidi
13、c devices rely on hydrophilic properties so that the channel walls can promote capillary action and allow proper fluid flow. Thus, to increase the surface energy chemical treatment and oxid</p><p> In the e
14、xample shown, analytes such as glucose and lactate were monitored by utilizing an oxygen-sensitive dye embedded in a thin film. Glucose and lactate were oxidized in the presence of specific enzymes, i.e., glucose oxidase
15、 (GOx) and lactate oxidase (LOx), respectively, and oxygen. Oxygen is consumed in such reactions and in solution under specific experimental conditions the final dissolved oxygen (DO) level is related to the initial anal
16、yte concentration [5].</p><p> The enzymes can sometimes be embedded in a thin film; alternatively, they can be dissolved in solution. The consumption of DO in the oxidation reactions results in an increase
17、 in the PL intensity and the PL decay time of the oxygen-sensitive dye. In the preliminary measurements shown below, the OLED pixel array and the sensing film were structurally integrated by attaching two glass substrate
18、s, on which they were separately fabricated, back-to-back. The PL was monitored using a photomultiplier t</p><p> 2. EXPERIMENTAL PROCEDURE </p><p> 2.1. Materials</p><p> Foamed
19、 and extruded sheets of PP were obtained from Trexel Corporation (MA). The foaming level specified by Trexel was approximately 15% to 20%. The PP sheets had a thickness of about 5 mm and were cut to the size of a standar
20、d CD with common shears. The PP–CDs were then used for ultrasonic micro-embossing. </p><p> The oxygen sensitive dye used, Pt octaethyporphyrin (PtOEP), was obtained from H. W. Sands. It was embedded in a f
21、ilm of PS (molecular weight 45000) obtained from Sigma-Aldrich. GOx (from Aspergillus niger), LOx (from pichia pastoris), glucose and L-lactate were purchased from Sigma-Aldrich. All reagents were dissolved in a phosphat
22、e buffered saline (PBS) solution. The OLED excitation source used was based on tris (quinolinolate) Al (Alq3).</p><p> 2.2. CD preparation</p><p> Micro-embossing was performed in a foamed mat
23、erial using a Branson 2000 Series ultrasonic system that operated at 20 kHz using a titanium horn to generate the micro-features. The ultrasonic embossing was performed at 40 peak-to-peak amplitude and 0.5 s of heating t
24、ime. These conditions were based on previous studies [4]. A cross section of a typical feature is seen in Fig. 1.The image on the left is an embossed feature on a microcellular foam substrate; in contrast, the image on t
25、he right is an </p><p> Fig. 1. Cross section of typical features: Left: micro-embossing of foamed PP to generate flash-free micro-patterns. Right: embossed features in a standard PP and the generated flash
26、.</p><p> Fig. 2 shows the microchannels, reservoirs, and burst valves generated in the glucose/lactate Bio-CD. The CD contains four such sections that were used to detect different concentrations of glucos
27、e simultaneously. Valving was achieved by use of burst valves. That is, valves in which capillary forces pin liquids at an enlargement in a microfluidic channel. A pressure generated by rotation at a “burst frequency,” w
28、hich depends on the rotation speed and channel size, overcomes the capillary pressur</p><p> In order to increase the surface energy of the PP surface, treatments with a silicone surfactant and a proprietar
29、y organic system, which is believed to contain a surfactant, were evaluated. Each of the two resulting chemical coatings was individually studied and both produced the desired results. The coating solutions were obtained
30、 from Goulston Technologies, Inc (Monroe, NC) and were diluted with DI water at a ratio of 1:10; the dilution was applied directly onto the PP bio-CD sample substrate </p><p> To enable monitoring of the PL
31、, the bottom part of the reaction chamber on the CD was cut and a sensing film deposited on a thin glass substrate was attached. This replacement to a transparent bottom of the reaction chamber was necessary to enable PL
32、 monitoring using a PD in a “back detection” geometry. In this geometry the PD is behind the OLED array, detecting the PL signal that reaches it through the gaps between the OLED pixels. The PL signal, which reflected ba
33、ck from the bio-CD was capture</p><p> Fig. 2. Schematic (not to scale) of the Bio-CD components for monitoring glucose or lactate.</p><p> 2.3. OLED preparation</p><p> The OLE
34、Ds were prepared as an encapsulated matrix array of 2 x 2 mm2 square pixels resulting from mutually perpendicular stripes of etched ~100 nm thick indium tin oxide (ITO) (the anode) and ~100 nm Al (the cathode). The organ
35、ic layers sandwiched between the electrodes were deposited by thermal vacuum evaporation, as described previously [8, 9]. The OLEDs were operated in a pulsed mode with typically a forward bias of ~20 V and a pulse width
36、of 100 with a repetition rate of 50 Hz.</p><p> 2.4. Analyte detection</p><p> To evaluate the Bio-CD-based sensor in terms of flow, mixing, operation of the valves, and response time, the ana
37、lytes were monitoring in sealed cells as described next. In the initial studies, the analytes (enzymes) were placed in the reaction chamber and the enzymes (analytes) in the reservoirs. Upon rotation at ~1000 rpm the val
38、ve bursts and the buffer solutions of the enzyme and analyte were mixed. The reaction was performed in sealed cells, where dissolved oxygen (DO) is not replenished by </p><p> 3. RESULTS AND DISCUSSION</
39、p><p> 3.1. Surface energy manipulation</p><p> Fig. 3 demonstrates the flow of blue colored DI water in the surfactant coated PP bio-CD. Pictures a to d were captured consecutively at 2 s interv
40、als following injection of the solution (see Fig. 2). As seen, within 8 s, the water flowed from the burst valve to the reaction chamber. This indicates that the surface modification increased the surface energy within t
41、he channels and chambers embossed in the CD, since prior to this treatment we did not observe flow under similar experimental conditi</p><p> Fig. 3. Hydrophilic polypropylene CD surface prepared by using a
42、 surfactant based chemical coating. Images ‘a(chǎn)’ through ‘d’ were captured at 2-second intervals.</p><p> To quantify the effect of the surface treatment, the DI water contact angle was measured for untreated
43、 and treated surfaces. It was found that each of the two coatings increased the surface energy of the PP material from 29 dynes/cm to ~48 dynes/cm. Although the exact composition of the coating is proprietary, it is beli
44、eved to contain an ethylene vinyl alcohol copolymer mixed with a surfactant, such as polyethylene glycol diolate, nonylphen oxypoly (ethyleneoxy) ethanol, triethylene glycol divi</p><p> 3.2. Analyte monito
45、ring</p><p> In preliminary results, a solution of 18.2 mg/mL of the oxygen-sensitive dye tris (4,7-diphenyl-1, 10-phenanthroline) Ru chloride (Ru(dpp)) was used together with a blue OLED based on 4,4’-bis(
46、2,2’-diphenylvinyl)-1,1’-biphenyl (DPVBi) to monitor glucose. The effect of the solution volume (which was then limited to a maximal value of 15 µL) in the reaction chamber on the PL signal intensity was monitored.
47、It was shown that the signal intensity is generally proportional to the volume of the reagen</p><p> It was possible to follow τ by using PtOEP, whose τ ranges from ~95 µs in oxygen-free atmosphere to
48、~5µs in 100% O2 . In aqueous solution at ~23oC, where the DO level is ~8.5 wt. ppm, τ is 25-30µs, depending on the sensor film. Under comparable experimental conditions and sensor films, the calibration lines f
49、or glucose and lactate are similar as the DO level is monitored. However, each analyte is oxidized only in the presence of its specific enzyme and therefore there is no interference between </p><p> As show
50、n by Cai et al. [5], calibration lines for experiments performed in sealed containers obey a modified Stern-Volmer equation:</p><p> where I0 andτ0 are the unquenched PL intensity and decay time, respective
51、ly, and KSV is a film-and temperature-dependent constant.</p><p> Fig. 4 shows the modified Stern-Volmer plot for the preliminary results obtained using a sensor based on an Alq3-based OLED, a PtOEP : PS se
52、nsing film that served as the bottom of a reaction chamber in the PP CD, and a PMT PD. The reagents were mixed by opening a burst valve.</p><p> Fig. 4 . Modified Stern-Volmer calibration line for lactate i
53、n a sealed cell at 23℃ monitored on a PP CD-based sensor.</p><p> following rotation of the CD. The measured values of t were ~30, ~50, and ~90us for solutions at equilibrium with air at ambient temperature
54、, a solution containing 0.1 mM lactate, and a solution containing 0.25 mM or larger analyte concentrations, respectively. The latter are solutions devoid of oxygen, which was completely consumed by the oxidation reaction
55、, and as the reactions were performed in seals cells the in-diffusion of O2 from air was minimal. These preliminary results show the promise</p><p> It was also possible to measure four different concentrat
56、ions of glucose by utilizing the four separate sections on the CD. The four sections should enable also simultaneous detection of different analytes on the same CD when using a compatible array of small size photodiodes.
57、</p><p> 4. CONCLUSIONS</p><p> In summary, the advantage of the OLED-lab-on-CD based biosensing platform is its simplicity in terms of fabrication, integration, and usage, as well as its vers
58、atility in terms of (compact) size, design, and multianalyte detection feasibility. Additional studies are needed to optimize the sensor in terms of e.g., response time and analyte volume and flow. Additionally, the sens
59、or should be optimized for simultaneous detection of multiple analytes and integration with a thin film PD that will lea</p><p> ACKNOWLEDGEMENTS</p><p> Ames Laboratory is operated by Iowa St
60、ate University for the US Department of Energy (USDOE) under Contract DE-AC 02-07CH11358. This work was partially supported by NSF, ISU, and the Office of Basic Energy Sciences, USDOE.</p><p><b> 外文資料
61、譯文</b></p><p> 基于OLED的聚丙烯生物光盤傳感器</p><p> Srikanth Vengasandra, Yuankun Cai, David Grewell, Joseph Shinar, and Ruth Shinar</p><p> 農(nóng)業(yè)與生物系統(tǒng)工程中心</p><p> 阿姆斯實(shí)驗(yàn)室-U
62、SDOE和物理學(xué)與天文學(xué)系</p><p> 微電子研究中心、電子與計(jì)算機(jī)工程系,愛荷華州立大學(xué),50011,美國</p><p><b> 摘 要</b></p><p> 為了研制出微流平臺(tái)的傳感器設(shè)備,通過超聲波加熱把微型無閃光設(shè)備表面附上聚丙烯薄膜,得到生物光盤傳感器設(shè)備。壓制的特點(diǎn)是設(shè)計(jì)了儲(chǔ)液槽、閥門、反應(yīng)室,其共同組成了結(jié)合
63、緊湊的遙感平臺(tái),通過一臺(tái)個(gè)人電腦光盤播放器監(jiān)測(cè)分析物水平。為了使傳感器結(jié)構(gòu)緊湊,我們選擇光致發(fā)光為基礎(chǔ)基于OLED感應(yīng)平臺(tái)的檢測(cè)乳酸和葡萄糖。鍍膜之后,表面能量的塑料基板表現(xiàn)出親水性。試劑放置在單獨(dú)的位置,通過通道向反應(yīng)室由光盤旋轉(zhuǎn)混合。在適當(dāng)氧化酶催化作用下,通過測(cè)量相關(guān)的溶解氧水平對(duì)發(fā)光衰減時(shí)間的氧氣敏感染料的影響來測(cè)量乳酸或血糖濃度。結(jié)果表明有機(jī)電致發(fā)光器件作為基于光譜激勵(lì)源傳感器,微流光盤平臺(tái)有很大潛力,可以同時(shí)分析多種分析物。
64、</p><p> 關(guān)鍵詞:有機(jī)發(fā)光二極管,發(fā)光二極管,基于光盤實(shí)驗(yàn),葡萄糖傳感器,乳酸傳感器</p><p><b> 1.簡(jiǎn)介</b></p><p> 生物微機(jī)電系統(tǒng)(微機(jī)電系統(tǒng))為基礎(chǔ)的感應(yīng)平臺(tái)在制作塑膠基板上有很大的潛力,例如成本低、可一次性使用、無交叉污染、較好敏感性。此外,這種傳感器也表現(xiàn)出較高一次性監(jiān)測(cè)量和多種分析物檢測(cè)的
65、能力。這樣一個(gè)基于光盤實(shí)驗(yàn)的傳感平臺(tái)有很大優(yōu)勢(shì),它使用范圍廣并且可簡(jiǎn)單地解決多種問題,可以分析檢測(cè)多種分析物,并且尺寸更緊湊。此外,檢測(cè)通道很容易通過這種光盤實(shí)現(xiàn)。</p><p> 本文介紹了使用超聲波壓印聚丙烯在光盤里產(chǎn)生的微流通道、閥門、儲(chǔ)層、反應(yīng)點(diǎn)。超聲微壓印是局部熱的來源,這種技術(shù)的優(yōu)點(diǎn)包括循環(huán)時(shí)間短,易壓印和低殘余應(yīng)力。此外,這種方法適用于批量和連續(xù)生產(chǎn),它是注塑成型和熱壓相對(duì)簡(jiǎn)單并且更常見的制作方
66、法。微流控光盤結(jié)構(gòu)產(chǎn)生材料是聚碳酸酯、聚苯乙烯)、</p><p> 聚二甲基硅氧烷(硅橡膠)和聚丙烯。</p><p> 就像這項(xiàng)工作中所表現(xiàn)的那樣,該光盤可以與光致發(fā)光為基礎(chǔ)的有機(jī)發(fā)光傳感器感應(yīng)平臺(tái)集成在一起,來構(gòu)造一個(gè)緊湊的監(jiān)測(cè)裝置,例如檢測(cè)乳酸和葡萄糖。光盤材料通常具有較低的表面能使它們具有疏水性。然而,許多功能微設(shè)備依靠親水性能使通道的墻壁可以促進(jìn)微通道允許適當(dāng)?shù)牧黧w流動(dòng)。因
67、此臭氧和等離子體等常用來化學(xué)處理增加表面能的氧化性。</p><p> 在示例中,在薄膜中添加敏感材料來對(duì)組分中葡萄糖和乳酸進(jìn)行監(jiān)測(cè)。葡萄糖和乳酸在特定的酶作用下氧化,即葡萄糖氧化酶(葡萄糖)和乳酸氧化酶(液氧),還有氧氣。氧在這樣的反應(yīng)中消耗,通過計(jì)算在特定的實(shí)驗(yàn)條件的最終溶解氧來對(duì)分析物濃度做初步分析。</p><p> 酶也可以被嵌入在一個(gè)薄膜中,它們也能夠溶解在溶液中。消耗在氧
68、化反應(yīng)的結(jié)果增加發(fā)光強(qiáng)度和發(fā)光衰減時(shí)間的氧氣敏感的染料。在初步測(cè)量所示,該像素陣列和傳感膜結(jié)構(gòu)集成在玻璃基板上,對(duì)他們進(jìn)行單獨(dú)制造使它們背靠背挨著。發(fā)光監(jiān)測(cè)使用光電倍增管,它是小型硅光電二極管陣列,兼容設(shè)計(jì)的有機(jī)發(fā)光二極管像素也可用來使其更緊湊,傳感器可實(shí)時(shí)調(diào)試。也可通過整合發(fā)光激發(fā)傳感膜、薄膠片探測(cè)器構(gòu)造一個(gè)更緊湊的傳感器。這種綜合布線系統(tǒng)基于非晶或納米晶硅,目前正在發(fā)展中,然而目前發(fā)展的速度緩慢,不允許監(jiān)測(cè)氧的模式。有機(jī)綜合布線系統(tǒng)
69、也適用于這種融合和可能,測(cè)量合適的發(fā)光體。</p><p><b> 2. 實(shí)驗(yàn)過程</b></p><p><b> 2.1 材料</b></p><p> 發(fā)泡板材擠出聚丙烯,來自Trexel公司,發(fā)泡的特定水平大約是15%到20%。聚丙烯板厚度約5毫米大小和標(biāo)準(zhǔn)尺寸的光盤一樣,聚丙烯光盤用于超聲波壓制。<
70、/p><p> 氧氣敏感的染料,十乙基卟啉鈀,它溶解在聚苯乙烯(分子量45000)中用來鍍膜;葡萄糖氧化酶,液氧(來自畢赤酵母公司),葡萄糖和乳酸均購自Sigma-Aldrich;所有試劑溶解于磷酸鹽緩沖鹽水溶液;有機(jī)電致發(fā)光器件的激發(fā)源是基于Alq3。</p><p><b> 2.2 準(zhǔn)備光盤</b></p><p> 軋花是在泡沫材料使
71、用2000系列超聲波系統(tǒng),運(yùn)行在20千赫使用鈦角產(chǎn)生的微觀特征,超聲波壓花進(jìn)行40峰峰值振幅和0.5秒的加熱時(shí)間,確定這些條件的依據(jù)是以往的研究,期中一個(gè)截面的典型的特征如圖1。圖像的左邊是一個(gè)壓印的微孔泡沫襯底;相對(duì)圖像右邊是一個(gè)標(biāo)準(zhǔn)的壓印特征,就像前面指出的那樣,通過使用發(fā)泡基材,不受歡迎的閃光減少,因此這是唯一結(jié)構(gòu)合適的發(fā)泡基材。</p><p> 圖1:截面的典型特征:</p><p
72、> 左:軋花聚丙烯發(fā)泡產(chǎn)生閃光微觀形態(tài)。右:浮雕的特點(diǎn),在標(biāo)準(zhǔn)和產(chǎn)生的閃光。</p><p> 圖2顯示了微通道、儲(chǔ)液槽和通道產(chǎn)生的葡萄糖/乳酸生物光盤。該光盤包含四部分,分別同時(shí)檢測(cè)不同濃度葡萄糖。汽門通過使用脈沖閥獲得,也就是說,閥針的液體在管道內(nèi)被強(qiáng)制擴(kuò)大在微通道,壓力通過一個(gè)快速高速的旋轉(zhuǎn)產(chǎn)生,這取決于旋轉(zhuǎn)速度和通道的大小,克服毛細(xì)管壓力使流體流動(dòng)。</p><p>
73、為增加聚丙烯表面能量,提出了一種方法,在有機(jī)硅表面添加活性劑和專有的有機(jī)系統(tǒng)。對(duì)每一個(gè)產(chǎn)生的化學(xué)涂料都進(jìn)行單獨(dú)研究,都產(chǎn)生預(yù)期的結(jié)果。該涂層解決方案來自于古斯頓技術(shù)公司,稀釋去離子水比例為1:10,直接應(yīng)用到聚丙烯生物的光盤樣品基質(zhì)在濕潤的條件下清潔處理15分鐘。表面處理后用去離子水沖洗并干燥的空氣吹干。計(jì)算以適當(dāng)?shù)慕嵌葋眍A(yù)處理和處理的樣品表面,以增加表面能。</p><p> 為了能夠監(jiān)測(cè)光譜,反應(yīng)室的光盤被
74、切斷,一個(gè)傳感薄膜沉積在一個(gè)薄玻璃基板附近。這種置換到一個(gè)透明的反應(yīng)室底部,它能夠使光電探測(cè)器在幾何位置的后側(cè)檢測(cè)光譜。在背后的有機(jī)發(fā)光二極管陣列檢測(cè)穿過有機(jī)電致發(fā)光器件陣列的光譜信號(hào)。從生物光盤反射回來被俘獲的光致發(fā)光信號(hào)通過濱松R6000光電倍增管測(cè)量,工作電壓為900 V。</p><p> 圖2.示意圖(不按比例)的生物光盤組成監(jiān)測(cè)葡萄糖或乳酸。</p><p> 2.3 OL
75、ED 準(zhǔn)備</p><p> OLED是一個(gè)封裝的矩陣陣列的2×2平方毫米正方形像素,以相互垂直的條紋蝕刻100納米厚的銦錫氧化物為陽極和100納米厚鋁為陰極。有機(jī)層之間夾在電極之間,通過沉積熱真空蒸發(fā)鍍膜,具體如前面描述。OLED的運(yùn)行的脈沖模式正向偏置電壓20伏特,脈沖寬度為100,重復(fù)率為50赫茲。</p><p><b> 2.4 分析物檢測(cè)</b&g
76、t;</p><p> 評(píng)價(jià)基于生物光盤傳感器在流動(dòng)、混合、閥門的操作和響應(yīng)時(shí)間,監(jiān)測(cè)分析物需要各自密封,接下來將做描述。在最初的研究中,分析物(酶)被放置在反應(yīng)室,酶(分析物)放在儲(chǔ)液槽。在1000轉(zhuǎn)每分鐘的轉(zhuǎn)速下緩沖溶液中的酶和分析物混合。反應(yīng)是在密封的小隔間中并且缺乏溶解氧并隔絕氧氣的環(huán)境下進(jìn)行,以簡(jiǎn)化分析,依據(jù)Stern-Volmer方程可直接計(jì)算出初步分析物濃度。分析物濃度范圍在0-0.5mM,最后的
77、量在反應(yīng)室中為200(即充分反應(yīng))。如以前報(bào)告所述,小反應(yīng)量也可以測(cè)量,信號(hào)強(qiáng)度會(huì)向預(yù)期一樣降低。研究中實(shí)驗(yàn)控制變量為緩沖區(qū)、緩沖、混合緩沖葡萄糖,氧氣敏感的染料的影響體現(xiàn)在檢測(cè)信號(hào)的強(qiáng)度和發(fā)光衰減時(shí)間。</p><p><b> 3.結(jié)果和討論</b></p><p><b> 3.1 表面能操縱</b></p><p&
78、gt; 圖3表明流動(dòng)藍(lán)色的去離子水的表面活性劑涂層聚丙烯生物光盤。圖片a到d 是在2秒的間隔連續(xù)捕獲的.注射后的結(jié)果(參見圖2)??梢钥闯?,在8秒內(nèi),水流從管道到反應(yīng)室。這表明,表面限制增加了范圍內(nèi)的和壓制在光盤上的小格子的表面能量,因?yàn)樵诖酥邦愃频膶?shí)驗(yàn)條件下我們并沒有觀察到流動(dòng)。</p><p> 圖3. 親水性聚丙烯光盤表面采用表面活性劑為主的化工涂料</p><p> 圖像a
79、到d顯示每2秒時(shí)間間隔</p><p> 為了量化表面處理的影響,定量計(jì)算水和處理、未處理表面的接觸角。結(jié)果發(fā)現(xiàn),每種涂料增加了表面能的聚丙烯材料從29達(dá)因/厘米~48達(dá)因/厘米。雖然確切組成的涂層是專有的,它被認(rèn)為含有乙烯乙烯醇共聚物與表面活性劑混合,如聚乙二醇、氧化乙烯、乙醇、三乙二醇二乙烯基醚以及它們的組合。</p><p><b> 3.2 分析物監(jiān)測(cè)</b&g
80、t;</p><p> 初步結(jié)果,一種方案以18.2毫克/毫升的氧氣敏感的染料三氯化釕和基于2,2'-二苯乙烯-1,1'-聯(lián)苯的藍(lán)光有機(jī)電致發(fā)光器件監(jiān)測(cè)血糖,監(jiān)測(cè)實(shí)驗(yàn)用量(最大值為15μL)對(duì)結(jié)果的影響。結(jié)果表明,信號(hào)發(fā)光強(qiáng)度和所用試劑的量成正比例關(guān)系,并且在相同的實(shí)驗(yàn)條件下3μL的體積取得最佳的發(fā)光效果,獲得了完整的信號(hào)強(qiáng)的和葡萄糖濃度的關(guān)系曲線。然而,由于背景光影響光電探測(cè)器在一定程度上影響
81、了試驗(yàn)器件發(fā)光光譜,降低了檢測(cè)靈敏度,我們選擇監(jiān)測(cè)發(fā)光衰減時(shí)間(τ),因?yàn)樗苡袡C(jī)電致發(fā)光器件脈沖發(fā)光的影響較小,光譜脈沖發(fā)光延遲時(shí)間小于100納秒。</p><p> 接下來用PtOEP測(cè)發(fā)光時(shí)間t變化,在無氧環(huán)境下延遲時(shí)間t為95μs,在純氧中延遲時(shí)間為5μs,具體取值取決于傳感器的薄膜。通過實(shí)驗(yàn)對(duì)比實(shí)驗(yàn)條件和傳感器薄膜,測(cè)得的葡萄糖和乳酸量和預(yù)期水平一致,由于每個(gè)分析物只在特定的酶作用下氧化,因此實(shí)驗(yàn)在各
82、組分之間不存在干擾。</p><p> 根據(jù)資料,密封狀態(tài)下實(shí)驗(yàn)校準(zhǔn)線的計(jì)算滿足Stern-Volmer方程:</p><p> 期中τ0是淬火的發(fā)光強(qiáng)度和衰減時(shí)間,Ksv是一個(gè)和薄膜、溫度相關(guān)的常量。</p><p> 圖4顯示了修正后的Stern-Volme圖形,基于Alq3有機(jī)電致發(fā)光傳感器,溶解在聚苯乙烯中的PtOEP作為傳感薄膜鍍?cè)诹斯獗P的上面,上面
83、還有一個(gè)光電探測(cè)器,試劑通過打開一個(gè)通道混合。</p><p> 圖4. 基于光盤的傳感器監(jiān)測(cè)在23℃密封狀態(tài)下的修正后的Stern-Volmer校準(zhǔn)線</p><p> 隨著光盤的轉(zhuǎn)動(dòng),測(cè)量時(shí)間為30us,50us,90us,并且隨空氣和溫度穩(wěn)定;變量設(shè)計(jì)為0.1mM乳酸和含0.25mM或更大的分析物的濃度。后面是在沒有氧氣的情況下的結(jié)論,這是完全消耗的氧化反應(yīng),在密封環(huán)境下空氣中氣
84、體干擾最小。這些初步結(jié)果表明各種結(jié)合的可能性,另外一個(gè)鍍膜的光電探測(cè)器體積要精巧,以滿足各種設(shè)備。也可以測(cè)量四個(gè)不同濃度的葡萄糖利用在光盤上四個(gè)獨(dú)立的空間,這四部分應(yīng)使在使用小尺寸的光電二極管陣列時(shí)兼容。</p><p><b> 4.結(jié)論</b></p><p> 總之,基于OLED在光盤上實(shí)驗(yàn)的傳感器的優(yōu)勢(shì)是制造時(shí)的簡(jiǎn)單精巧,容易集成和使用,同時(shí)它的緊湊性能夠
85、使用在設(shè)計(jì)和分析多種分析物上。另外在研究和優(yōu)化傳感器上仍需繼續(xù)深入研究,比如考慮到反應(yīng)時(shí)間和樣品的體積、流量。此外,可進(jìn)一步優(yōu)化傳感器,使其可檢測(cè)多種分析物,這樣可以設(shè)計(jì)出更緊湊的裝置。</p><p><b> 致謝</b></p><p> 阿姆斯實(shí)驗(yàn)室屬于愛荷華州立大學(xué)為美國能源部,合同號(hào)DE-AC 02-07ch11358,項(xiàng)目工作的部分支持來自美國國家科
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 傳感器外文翻譯
- 傳感器外文翻譯---傳感器的基礎(chǔ)知識(shí)
- 傳感器技術(shù)外文翻譯
- 基于海藻膠與聚丙烯腈丙烯酸生物傳感器的構(gòu)筑及性能研究.pdf
- 傳感器設(shè)計(jì)外文翻譯
- 溫度傳感器外文翻譯
- 傳感器設(shè)計(jì)外文翻譯
- 外文翻譯--- - 傳感器和傳感器激勵(lì)和測(cè)量技術(shù)
- 集成溫度傳感器外文翻譯
- 傳感器設(shè)計(jì)外文翻譯.pdf
- 傳感器設(shè)計(jì)外文翻譯.pdf
- [雙語翻譯]--外文翻譯--基于移動(dòng)手機(jī)平臺(tái)的生物醫(yī)學(xué)傳感器技術(shù)
- 單線溫度傳感器外文翻譯
- 外文翻譯--光纖傳感器概述
- 氣體傳感器——外文翻譯.doc
- 傳感器畢業(yè)設(shè)計(jì)外文翻譯--傳感器新技術(shù)的發(fā)展
- [雙語翻譯]--外文翻譯--基于移動(dòng)手機(jī)平臺(tái)的生物醫(yī)學(xué)傳感器技術(shù)(譯文)
- 基于OLED的氣體傳感器的制備及性能研究.pdf
- [雙語翻譯]無線傳感器網(wǎng)絡(luò)外文翻譯--基于zigbee的無線傳感器網(wǎng)絡(luò)水質(zhì)監(jiān)測(cè)系統(tǒng)
- 外文翻譯---傳感器新技術(shù)的發(fā)展
評(píng)論
0/150
提交評(píng)論