外文翻譯---在煤層開采地點(diǎn)控制地下水污染的決策支持系統(tǒng)的發(fā)展_第1頁(yè)
已閱讀1頁(yè),還剩9頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p><b>  翻譯部分</b></p><p><b>  英文原文</b></p><p>  Development of a Decision Support System for Groundwater Pollution Control at Coal-mining Contaminated Sites</p>

2、;<p>  Xiaodong Zhang Faculty of Engineering University of Regina</p><p>  Christine W. Chan Faculty of Engineering/Energy Informatics Laboratory University of Regina</p><p>  Gor

3、don Huang Faculty of Engineering University of Regina</p><p><b>  Abstract:</b></p><p>  Groundwater contamination is one of the major environment concerns at coal-mining sites.

4、Highly saline or highly acidic water from coal-mining can introduce serious pollution to groundwater and adversely affect its quality. </p><p>  This impact may last a long time even after the mining activ

5、ity has ceased. Identification of an appropriate remediation technique is critical for effective pollution control. However, due to complexity of considerations involved in the pollution, it is difficult for environmenta

6、l managers to select optimal techniques. This paper presents a robust decision support system named GCDSS that integrates the functional components of mine characterization, numerical modeling, risk assessment and remedi

7、</p><p><b>  Keywords:</b></p><p>  Decision support system; acid mine drainage (AMD); groundwater; coal mine</p><p>  1 Introduction </p><p>  Groundwater

8、contamination is one of the major environmental concerns at coal mining sites. Acid mine drainage (AMD) is the primary problem associated with pollution from coal mining. AMD is often highly acidic water rich in heavy me

9、tals, which can introduce serious pollution to groundwater and adversely affect its quality. A variety of AMD treatment technologies and groundwater remediation methods were developed. Due to the complexities of these te

10、chnologies, it is often difficult for environmen</p><p>  2 Background: AMD and its treatment </p><p>  AMD from coal mining is a difficult and costly problem. It can seriously affect groundwate

11、r quality and cause metals to leach from mine wastes. AMD results from the oxidation of metal sulfides, particularly pyrite (FeS2). Under the acidic conditions, oxidation of pyrite occurs in the following reaction [1]:

12、</p><p>  This reaction demonstrates the polluting capability of the oxidation of pyrite that every mole of pyrite can be converted to 16 moles of hydrogen and 2 moles of sulfate. Much acid is generated thro

13、ugh this reaction.</p><p>  There are two methods for treating AMD: active treatment and passive treatment. Active treatment involves neutralizing acid-polluted water with alkaline chemicals which include li

14、mestone, hydrated lime, caustic soda, soda ash, and ammonia [2]. Active treatment is expensive and requires much time and manpower to maintain. Passive treatment employs naturally occurring chemical and biological reacti

15、ons and requires little or no maintenance. Passive methods include anoxic drains, limestone rock chan</p><p>  3 Development of Decision Support System </p><p>  3.1 Knowledge Acquisition</p&

16、gt;<p>  Knowledge acquisition is a bottleneck in DSS development and involves the processes of knowledge elicitation, analysis and representation. It is crucial because output of the system is only as good as the

17、 input. The main sources of knowledge in this study are the domain experts, the statistical data about coal mining, and documents.</p><p>  3.2 GCDSS </p><p>  GCDSS consists of the modules for

18、mine characterization, numerical modeling, risk assessment, and remediation technique selection. It also consists of a graphical user interface which allows the user to input and query the site related data, and shows th

19、e recommendations and suggestions for the user. Details on the numerical modeling, risk assessment, and remediation technique selection modules are discussed as follows. The architecture of GCDSS is shown in Figure 1.&

20、lt;/p><p>  Fig.1 Architecture of GCDSS</p><p>  3.2.1 Mine Characterization Module </p><p>  Mine characterization is crucial for the following numerical modeling, risk assessment, an

21、d the selection of remediation technologies in GCDSS. This module has the function of providing the necessary data and standards input for the other three modules. A number of factors on mine characterization are discuss

22、ed in this module, for example:</p><p>  (1) Types of mining </p><p>  There are two types of coal mines: surface and underground. Surface mining includes open pit mining, highwall or strip mini

23、ng, which recovers coal at or close to the earth’s surface. Underground mining extracts coal from under the surface.</p><p>  (2) Mining wastes </p><p>  The major wastes from coal mining activi

24、ties are mining water and waste rock, which are serious long-term sources of groundwater deterioration. Mining water, commonly referred to AMD, is highly acid water rich in heavy metals. Mining water can directly pollute

25、 groundwater when mining is below the water table, or indirectly through seepage. Waste rock is often disposed in large dumps. When water (such as rainwater, surface water or mining water) infiltrates through waste dumps

26、 into subsurface wat</p><p>  3.2.2 Numerical Modeling Module </p><p>  Numerical modeling of groundwater flow and transport requires a number of data inputs on soil hydraulic properties, time i

27、ntegration parameters, initial and boundary conditions, porous media dispersivities, species solubility, and other many parameters. This module implements the general multicomponent transport equation which can be expres

28、sed as follows [4]. </p><p>  where and are the fractions of the soil filled with mobile and immobile water respectively; and are the concentrations of contaminant w in the mobile and immobile water

29、respectively; is the Darcy velocity ; and are adsorbed phase concentrations of contaminant w in the mobile and immobile phase respectively ; f is the fraction of sorption sites which is in direct contact with mobile

30、 liquid; is soil bulk density; is the volumetric flow rate of fluid injection (or withdrawal) per unit v</p><p>  3.2.3 Risk Assessment Module </p><p>  Environmental risk is the probability of

31、 injury, disease or death under carcinogen and noncarcinogen circumstances [5]. Assessment of the risk of pollution of groundwater includes: simulation for the fate and transport of contaminants in groundwater, assessmen

32、t of leaching from waste products or polluted soil, analysis of toxicological effects on health and environment, and exposure assessment. Two methods for risk assessment were recommended by USEPA (1992) [6]: excess lifet

33、ime cancer risk (ELC</p><p>  Excess Lifetime Cancer Risk (ELCR)</p><p>  ELCR is estimated as the incremental probability of an individual developing cancer over a lifetime as a result of expos

34、ure to the potential carcinogen. It may be expressed as follows: </p><p>  ELCR = CDI × SF (3)</p><p>  where CDI is chronic daily intake (mg/kgday), SF

35、is the slope factor which is a maximum estimate of the probability of an individual developing cancer over a lifetime of exposure to a particular level of a potential carcinogen. In this study, CDI may be obtained from t

36、he equation (4), based on the concentration of contaminant w in groundwater [7]. </p><p>  CDI = CW × IR × EF × ED/ (AT × BW) (4)</p><p>  where CW is the

37、 concentration of contaminant w in groundwater (mg/L), IR is human ingestion rate (L/day), EF is exposure frequency (days/year), ED is average exposure duration (year), AT is average time (AT = 365 × days/year ×

38、; ED), and BW is body weight (kg). In this study the values for these parameters for an adult may be: IR= 2 L/day, EF = 350 days/year, ED = 70 years (lifetime), AT =365 × days/year × 70 years, BW = 70 kg..</

39、p><p>  (2) Hazard Quotient (HQ)</p><p>  HQ is used to describe the potential for noncarcinogenic toxicity, and may be expressed as follows: </p><p>  HQ= CDI / RfD

40、 (5)</p><p>  where RfD is reference dose (mg / kg·day). The greater the value of HQ, the greater the level of concern. For example, the value 0.05 of HQ indicates that the probability of gett

41、ing a health injury is 5%. However, the level of concern does not increase linearly as the RfD is approached or exceeded because RfD does not have the same accuracy or precision as the level of concern and is not based o

42、n the same severity of toxic effects [7].</p><p>  3.2.4 Remediation-Technique Selection Module</p><p>  A number of technologies are available to remediate groundwater contaminated by coal-mini

43、ng activities. Groundwater remediation methods can be classified into two classes: in situ and ex situ methods. In situ methods treat polluted groundwater in place, while ex situ methods excavate contaminants and transpo

44、rt them off-site for treatment. The methods for treating AMD may be active and passive. Since it is difficult for the user to select a suitable remediation technique for the specific sites, t</p><p>  4 Conc

45、lusions </p><p>  In this study, an integrated decision support system (GCDSS) is proposed for groundwater pollution control at coal-mining contaminated sites. Through the developed GCDSS, the functions of m

46、ine characterization, numerical modeling, risk assessment and remediation-technique selection are effectively integrated. The user can access various resources within this system and obtain support on selection of differ

47、ent remediation technologies.</p><p>  Acknowledgements</p><p>  The generous support of a Research Grant from the Natural Sciences and Engineering Research Council of Canada is gratefully ackno

48、wledged.</p><p><b>  中文譯文</b></p><p>  在煤層開采地點(diǎn)控制地下水污染的決策支持系統(tǒng)的發(fā)展</p><p>  張曉東 里賈納大學(xué)工學(xué)部</p><p>  克里斯蒂娜 里賈納大學(xué)工學(xué)部/能源信息實(shí)驗(yàn)室</p><p>  黃戈登 里賈納大學(xué)工學(xué)

49、部</p><p><b>  摘 要:</b></p><p>  在采煤點(diǎn)產(chǎn)生的地下水污染是一個(gè)重大環(huán)境問(wèn)題。來(lái)自采煤點(diǎn)的高鹽或高酸性水會(huì)嚴(yán)重污染地下水,并嚴(yán)重影響水的質(zhì)量。</p><p>  這種影響在采礦活動(dòng)已經(jīng)停止后可能會(huì)持續(xù)很長(zhǎng)一段時(shí)間。有效控制污染的關(guān)鍵是確定適當(dāng)?shù)难a(bǔ)救技術(shù)。然而,由于污染中有復(fù)雜的因素參與,這是便增加了環(huán)境管

50、理人員選擇最佳的技術(shù)的困難。本文提出了一種強(qiáng)有力的合礦山特性,數(shù)值模擬,風(fēng)險(xiǎn)評(píng)估和修復(fù)技術(shù)的選擇為一體的名為GCDSS的決策支持系統(tǒng)。從一個(gè)案例研究表明該系統(tǒng)可以幫助提高在煤礦開采污染點(diǎn)控制地下水污染的效率。</p><p>  關(guān)鍵詞:煤礦;地下水; 礦山酸性廢水; 決策支持系統(tǒng) </p><p><b>  1介紹</b></p><p&g

51、t;  在采煤點(diǎn)地下水污染是主要相關(guān)環(huán)境問(wèn)題之一。礦山酸性廢水( AMD )是來(lái)自煤炭開采產(chǎn)生的初始問(wèn)題。 AMD往往是含有重金屬非常豐富的酸性水,它可以產(chǎn)生嚴(yán)重的地下水污染和嚴(yán)重影響水質(zhì)量。 大量關(guān)于AMD的各種治療技術(shù)和地下水修復(fù)的方法得到發(fā)展。由于這些技術(shù)的復(fù)雜性,環(huán)境管理人員在特定污染點(diǎn)往往很難為做出最佳方案的選擇。決策支持系統(tǒng)(決策支持系統(tǒng))可以幫助解決這一問(wèn)題。關(guān)于煤炭開采的管理和地下水整治行動(dòng)許多決策支持系統(tǒng)被提出了。然而

52、,由于沒(méi)有一個(gè)在決策支持系統(tǒng)中結(jié)合煤礦的職能特性,數(shù)值模擬,風(fēng)險(xiǎn)評(píng)估和修復(fù)技術(shù)選擇有足夠的研究。本研究的目的是為了填補(bǔ)這以前的研究中缺少的空白和并發(fā)展成在煤礦開采污染點(diǎn)控制地下水污染的支持所有上述這些職能一個(gè)綜合決策支持系統(tǒng)( GCDSS )。</p><p>  2背景:AMD及其治療</p><p>  治理來(lái)自煤礦開采的礦山酸性廢水(AMD)是一個(gè)困難和代價(jià)高昂的問(wèn)題。AMD會(huì)嚴(yán)重影

53、響地下水水質(zhì),并導(dǎo)致金屬溶解在廢水中。 AMD產(chǎn)生的結(jié)果是氧化金屬硫化物,尤其是黃鐵礦( FeS2 ) 。在酸性條件下,氧化黃鐵礦發(fā)生在下面的反應(yīng)[ 1 ] :</p><p>  這種反應(yīng)表明,污染能力的黃鐵礦氧化,每摩爾黃鐵礦可轉(zhuǎn)換為16鼴鼠的氫和2痣的硫酸。多酸是通過(guò)這種反應(yīng)產(chǎn)生的。</p><p>  有兩種方法治療AMD的方案:積極治療和被動(dòng)治療。積極治療涉及消除酸污染的水堿性化

54、學(xué)品,其中包括石灰石,熟石灰,燒堿,純堿,和氨[ 2 ] 。積極治療非常昂貴,而且需要大量的時(shí)間和人力來(lái)保持。被動(dòng)治療是采用自然產(chǎn)生的化學(xué)和生物反應(yīng)和需要很少或根本不要花費(fèi)來(lái)維持。被動(dòng)方法包括缺氧水渠,石灰?guī)r渠道,堿性補(bǔ)給地下水,排水和轉(zhuǎn)移,通過(guò)人為的濕地或其他解決結(jié)構(gòu)。</p><p><b>  3開發(fā)決策支持系統(tǒng)</b></p><p><b>  3

55、.1知識(shí)獲取</b></p><p>  知識(shí)的獲取在DSS發(fā)展的過(guò)程中是一個(gè)瓶頸,,涉及的知識(shí)獲取,分析和代表性。這是至關(guān)重要的,因?yàn)樵撓到y(tǒng)的輸出要和投入一樣好。主要的知識(shí)來(lái)源,是本研究領(lǐng)域的專家,有關(guān)煤炭開采的統(tǒng)計(jì)數(shù)據(jù)和文檔。</p><p><b>  3.2 GCDSS</b></p><p>  圖1 GCDSS結(jié)構(gòu)<

56、;/p><p>  GCDSS包括煤礦特性,數(shù)值模擬,風(fēng)險(xiǎn)評(píng)估和修復(fù)技術(shù)的選擇模塊。它還包括一個(gè)圖形用戶界面允許用戶輸入和查詢網(wǎng)站相關(guān)的數(shù)據(jù),并顯示了用戶的建議和意見。數(shù)值模擬,風(fēng)險(xiǎn)評(píng)估和修復(fù)技術(shù)選擇模塊詳細(xì)的討論如下。該架構(gòu)的GCDSS是如圖1所示。</p><p>  3.2.1礦山表征模塊</p><p>  礦山表征在GCDSS中的數(shù)值模擬,風(fēng)險(xiǎn)評(píng)估,并選擇修復(fù)

57、技術(shù)是至關(guān)重要的。此模塊的功能,提供必要的數(shù)據(jù)和在其他三個(gè)模塊投入的標(biāo)準(zhǔn)。在此模塊有若干相關(guān)礦井特征的因素被討論,例如:</p><p> ?。?1 )采礦的類型</p><p>  煤礦的類型有兩種:地表和地下。地表包括露天采礦,邊坡或條帶開采,開采在地表或接近地表的煤。地下開采是開采地下的煤。</p><p><b> ?。?2 )采礦廢物</b

58、></p><p>  從煤炭開采活動(dòng)中出來(lái)主要的廢物是廢水和廢石,這是長(zhǎng)期嚴(yán)重惡化地下水的源頭。開采出來(lái)的水,通常涉及AMD,是含有重金屬非常豐富的酸性水。當(dāng)開采低于地下水位時(shí),開采水可以直接污染地下水,或間接滲流通過(guò)。矸石往往是被放置在大型垃圾場(chǎng)。當(dāng)水(如雨水,地表水或采礦水)浸潤(rùn)通過(guò)廢棄物到地下的水時(shí),地下水水質(zhì)也會(huì)受到極大地影響[ 3 ] 。</p><p>  3.2.2數(shù)

59、值模擬模塊</p><p>  地下水流和運(yùn)輸數(shù)值模塊要求進(jìn)行一系列關(guān)于土壤水力特性的數(shù)據(jù)輸入,這些數(shù)據(jù)是時(shí)間積分參數(shù),初始和邊界條件,多孔介質(zhì),物種的溶解度,以及其他許多參數(shù)。該模塊實(shí)現(xiàn)了一般多運(yùn)輸方程可表示如下[ 4 ] 。</p><p>  和 是分別充滿了移動(dòng)和固定水的土壤成分;和 分別是在移動(dòng)和固定水中污染物濃度單位; 是達(dá)西速度; 和 分別是吸附在移動(dòng)和固定相的污染物的濃度單

60、位;F是移動(dòng)液體直接接觸的部分吸附點(diǎn);是土壤容重;是單位體積的多孔介質(zhì)體積流速注射液(或撤銷)的速率;i是注射液污染物的濃度;和是水動(dòng)力彌散張量。</p><p><b>  2.3風(fēng)險(xiǎn)評(píng)估模塊</b></p><p>  環(huán)境風(fēng)險(xiǎn)是傷害,疾病或死亡下致癌物和無(wú)致癌物情況的概率[ 5 ] 。地下水污染風(fēng)險(xiǎn)評(píng)估的內(nèi)容包括:下水中的污染物的刺激和運(yùn)輸結(jié)果,評(píng)估浸出產(chǎn)品或廢

61、物污染土壤,分析毒理效應(yīng)對(duì)健康和環(huán)境,和接觸評(píng)估。美國(guó)環(huán)保局( 1992 )所建議的兩種進(jìn)行風(fēng)險(xiǎn)評(píng)估的方法[ 6 ] :導(dǎo)致癌癥污染物的超額終身癌癥風(fēng)險(xiǎn)( ELCR )和導(dǎo)致無(wú)致癌物污染物危險(xiǎn)商數(shù)(HQ)。</p><p> ?。?1 )超額終身癌癥風(fēng)險(xiǎn)( ELCR )</p><p>  ELCR被作為由于暴露在潛在的致癌物質(zhì)下一生概率。它可以表述如下:</p><p

62、>  ELCR = CDI × SF (3)</p><p>  如果CDI是慢性每日允許攝入量(毫克/ kgday ) ,SF是斜坡因素是最大的發(fā)展成癌癥個(gè)體的一生接觸到特定水平的一個(gè)潛在的致癌物質(zhì)。在這項(xiàng)研究中,CDI可從方程( 4 )的基礎(chǔ)上,集中在地下水的污染 [ 7 ] 。</p><p>  CDI

63、 = CW × IR × EF × ED/ (AT × BW) (4)</p><p>  如果CW是地下水(毫克/升)污染物的濃度 ,EF是人類攝食率(升/天) ,IR是曝光頻率(天/年) , ED是平均接觸時(shí)間(一年) ,AFJ是平均時(shí)間(AT= 365 ×天/年× ED) ,以及BW是體重(公斤) 。在這項(xiàng)研究中,對(duì)

64、這些參數(shù)成人的價(jià)值觀念可能是:IR= 2升/日,EF= 350天/年,ED= 70年(終身) ,AT= 365 ×天/年× 70歲,BW= 70公斤。</p><p> ?。?2 )危害商數(shù)(HQ)</p><p>  HQ是用來(lái)說(shuō)明無(wú)無(wú)致癌物毒性潛力,并可能會(huì)表示如下:</p><p>  HQ = CDI / RfD

65、 (5)</p><p>  RfD是指參考劑量(毫克/千克?天) 。HQ有更大的價(jià)值,,就會(huì)有更大程度的相關(guān)性。例如,價(jià)值0.05的HQ表明,獲得健康傷害概率是5 % 。但是,相關(guān)性的程度不增加線性作為參考劑量是接近或超過(guò)參考劑量并不因?yàn)橛邢嗤臏?zhǔn)確性或精確的程度的關(guān)注,而不是基于同樣嚴(yán)重的毒性作用[ 7 ] 。</p><p>  3.2.4修復(fù)技術(shù)

66、選擇模塊</p><p>  一些技術(shù)是可以補(bǔ)救在煤炭開采活動(dòng)中引起地下水污染的。地下水修復(fù)方法可分為兩類:在原地保護(hù)和易地方法。原地方法是在污染地下水的地方治理,而易地方法挖掘和運(yùn)輸這些污染物場(chǎng)外接受治理。治理礦山酸性廢水的方法可分為主動(dòng)和被動(dòng)。用戶很難在具體地點(diǎn)選擇合適的補(bǔ)救技術(shù),而決策支持系統(tǒng)可幫助用戶做出選擇。用戶可以輸入所需的數(shù)據(jù),如污染點(diǎn)的特點(diǎn)和通過(guò)友好的用戶界面的數(shù)值模擬參數(shù)。GCDSS可以評(píng)估各種

67、組合的補(bǔ)救技術(shù)和礦山酸性廢水的治理方法,并在某一特定采煤地點(diǎn)控制地下水污染確定最佳的策略,。</p><p><b>  4結(jié)論</b></p><p>  在本研究中,綜合決策支持系統(tǒng)( GCDSS )在煤礦開采污染的地點(diǎn)控制地下水污染提出建議。通過(guò)發(fā)展GCDSS ,使煤礦的職能特性,數(shù)值模擬,風(fēng)險(xiǎn)評(píng)估和修復(fù)技術(shù)的選擇得到有效整合。用戶在這個(gè)系統(tǒng)中可以訪問(wèn)各種資源,

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論