土建專業(yè)外文翻譯2_第1頁
已閱讀1頁,還剩6頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  附錄 1</b></p><p><b>  翻譯</b></p><p>  適當(dāng)有效的建筑材料是限制富有經(jīng)驗(yàn)的結(jié)構(gòu)工程師成就的主要原因之一。早期的建筑者幾乎都只使用木材,石頭,磚塊和混凝土。 盡管鑄鐵在修建埃及的金字塔中已被人們使用, 但是把它作為建筑材料卻由于大量熔煉它比較困難而被限制。 藉由產(chǎn)業(yè)革命,然而,受

2、到把鑄鐵作為建筑材料和在大量融煉它的能力的兩者對(duì)其雙重需要的影響。</p><p>  John Smeaton,一個(gè)英國土木工程師, 在十八的世紀(jì)中時(shí),是第一廣泛地使用鑄鐵作為建筑材料的。在1841之后,可鍛金屬被發(fā)展成更可靠的材料并且廣泛地被應(yīng)用。盡管可鍛金屬優(yōu)于鑄鐵,但仍有很多結(jié)構(gòu)破壞從而需要有更可靠的材料。鋼便是這一需要的答案。1856年的貝色麥轉(zhuǎn)轉(zhuǎn)爐煉鋼法和后來發(fā)展的馬丁平爐煉鋼法的發(fā)明使以競爭的價(jià)格形

3、成了生產(chǎn)建筑用鋼并且興起了建筑用鋼在下個(gè)百年的快速發(fā)展。</p><p>  鋼的最嚴(yán)重缺點(diǎn)是它容易被氧化而需要被油漆或一些其他的適當(dāng)涂料保護(hù)。當(dāng)鋼被用于可能發(fā)生火災(zāi)環(huán)境時(shí), 鋼應(yīng)該包圍在一些耐火的材料中, 例如石料或混凝土。通常,鋼的組合結(jié)構(gòu)不易被壓碎除非是在冶金成分不好,低溫的不利組合, 或空間壓力存在的情況下。</p><p>  建筑用鋁仍然不廣泛被在土木工程結(jié)構(gòu)中用,雖然它的使用

4、正在穩(wěn)定地增加。藉著鋁合金作為一個(gè)適當(dāng)?shù)倪x擇和對(duì)其進(jìn)行熱處理,可獲得各式各樣的強(qiáng)度特性。一些合金所展現(xiàn)的抗壓強(qiáng)度特性相似于鋼, 除線形彈性模量大約是7,000,000 牛/平方厘米,相當(dāng)于剛的三分之一。質(zhì)量輕和耐氧化是鋁的兩個(gè)主要優(yōu)點(diǎn)。因?yàn)樗奶匦詫?duì)熱處理是非常敏感的,當(dāng)鉚接或焊接鋁的時(shí)候,一定要小心仔細(xì)。一些技術(shù)已為制造預(yù)制鋁組合配件及形成若干的美麗的設(shè)計(jì)良好的外型結(jié)構(gòu)的鋁制結(jié)構(gòu)而發(fā)展起來。組合房屋配件制造的一般程序藉由螺栓連接,這似

5、乎是利用建筑用鋁的最有前途的方法。</p><p>  加強(qiáng)和預(yù)應(yīng)力混凝土是主要的建筑材料。天然的水泥混凝土已經(jīng)被使用長達(dá)數(shù)世紀(jì)之久?,F(xiàn)代的混凝土建筑興起于十九世紀(jì)中葉,盡管人造水泥被 Aspidin ,一個(gè)英國人于1825年申請(qǐng)了專利. 雖然一些建筑者和工程師在十九世紀(jì)后期用鋼筋混凝土作實(shí)驗(yàn), 但作為一種建筑材料它占統(tǒng)治地位是在二十世紀(jì)初期。后五十年鋼筋混凝土結(jié)構(gòu)設(shè)計(jì)和建筑得到迅速發(fā)展, 早期在法國的 Frey

6、ssinet 和比利時(shí)的 Magnel被大量使用。</p><p>  素混凝土作為建筑材料有一個(gè)非常嚴(yán)重的缺點(diǎn):就是它的抗拉強(qiáng)度非常有限, 只是它的抗壓強(qiáng)度的十分之一。素混凝土不僅受拉破壞是脆性破壞,而且受壓破壞也是在沒有多大變形預(yù)兆的情況下發(fā)生的準(zhǔn)脆性破壞。(當(dāng)然,在鋼筋混凝土建筑中,可以得到適當(dāng)?shù)难有?。只有進(jìn)行適當(dāng)?shù)酿B(yǎng)護(hù)和合理的選擇并且摻加適當(dāng)?shù)幕旌咸旒觿?否則 霜凍破壞能嚴(yán)重的損害混凝土。在長期荷載作用

7、下混凝土在選擇設(shè)計(jì)受壓情況方面要仔細(xì)考慮。在硬化的時(shí)候和它的早期養(yǎng)護(hù)下,混凝土收縮占主要地位, 因此需要添加適當(dāng)?shù)乇壤奶砑觿┒矣眠m當(dāng)?shù)慕ㄖ夹g(shù)來控制。</p><p>  藉由所有的這些可能的嚴(yán)重缺點(diǎn),工程師已經(jīng)試著為各種實(shí)際結(jié)構(gòu)設(shè)計(jì)建立美麗的,持久的,和經(jīng)濟(jì)的鋼筋混凝土結(jié)構(gòu)。這是藉著設(shè)計(jì)尺寸和鋼筋排列安排的謹(jǐn)慎選擇,和適當(dāng)?shù)乃嗟陌l(fā)展已經(jīng)趨于同步, 適當(dāng)添加劑混合比例, 混合配置, 而且養(yǎng)護(hù)技術(shù)和建筑方法,

8、儀器的快速發(fā)展。</p><p>  混凝土具有多種用途,其組成材料廣泛可取,并且能非常方便地澆制成滿足強(qiáng)度及功能要求的形狀,同時(shí),隨著新型預(yù)應(yīng)力混凝土、預(yù)制混凝土以及普通混凝土施工方法令人興奮的進(jìn)一步改善和發(fā)展的潛力,這些因素綜合起來使得混凝土在絕大多數(shù)結(jié)構(gòu)中有著比其他材料更大的競爭力。</p><p>  在現(xiàn)代,藉由鋼和加強(qiáng)鋼筋的使用量在建筑結(jié)構(gòu)中的增加,木材在建筑期間主要地已經(jīng)被撤

9、離到附屬的、暫時(shí)的和次要的結(jié)構(gòu)中使用,成為建筑材料的次要成員。然而, 現(xiàn)代的技術(shù)在最后六十年中已經(jīng)有使木材作為建筑材料恢復(fù)生氣的跡象,藉由大量的改良了木材的加工方法,各種不同的處理方法增加了木材的耐久性, 而且疊片木材連同使用黏結(jié)技術(shù)的革命使得木材的性能有了更好的保證。各向同性的膠合板是最廣泛使用的壓層膠合板,隨著技術(shù)的發(fā)展,壓層膠合板已經(jīng)發(fā)展成為特定的結(jié)構(gòu)材料并對(duì)混凝土和鋼造成了強(qiáng)大的競爭力。</p><p>

10、  將來可能發(fā)展的材料是工程塑料和稀有金屬及他們的合金,如鈹,鎢,鉭,鈦,鉬,鉻,釩和鈮。有許多不同的塑料可以用,而且這些材料所展現(xiàn)的力學(xué)性能在很大的范圍內(nèi)改變。在如此許多的特性中我比較設(shè)計(jì)方案選擇適當(dāng)?shù)目赡艿乃芰喜牧鲜强赡艿?。?duì)塑料的使用受經(jīng)驗(yàn)的限制。一般而言,塑料一定要與空氣隔離。設(shè)計(jì)的這一個(gè)方面要求主要是對(duì)塑料結(jié)構(gòu)元素在使用中的考慮。 塑料被應(yīng)用的最有希望的潛能之一是嵌板和貝殼型結(jié)構(gòu)。疊片或夾心嵌板已經(jīng)被用于此種結(jié)構(gòu)以鼓勵(lì)未來建筑

11、大量應(yīng)用這一個(gè)類型材料。</p><p>  另一種引起注意的材料由纖維或像粒子的膠結(jié)加筋的微粒組成的合成物材料正在開發(fā)。雖然一種由玻璃或塑料膠結(jié)材料組成的玻璃纖維加筋合成物已經(jīng)被用長達(dá)數(shù)年之久, 但是他們很可能退落為次要的結(jié)構(gòu)材料。加筋混凝土是另一個(gè)積極地被學(xué)習(xí)而且發(fā)展的混合料。一些實(shí)驗(yàn)正在工作情況下進(jìn)行。實(shí)驗(yàn)主要內(nèi)容為鋼和玻璃纖維,但是大部份的使用經(jīng)驗(yàn)在鋼纖維方面比較先進(jìn)。</p><p&

12、gt;<b>  附錄 2</b></p><p><b>  英文文獻(xiàn)</b></p><p><b>  原文</b></p><p>  The availability of suitable structural materials is one of the principal limit

13、ations on the accomplishment of an experienced structural engineer. Early builders depended almost exclusively on wood, stone, brick, and concrete. Although iron had been used by humans at least since the building of t

14、he Egyptian pyramids, use of it as a structural material was limited because of the difficulties of smelting it in large quantities. With the industrial revolution, however, came both the need for </p><p&g

15、t;  John Smeaton, an English civil engineer, was the first to use cast iron extensively as a structural material in the mid-eighteenth century. After 1841, malleable iron was developed as a more reliable material and was

16、 widely used. Whereas malleable iron was superior to cast iron, there were still too many structural failures and there was a need for a more reliable material.   Steel was the answer to this demand. The invention of the

17、 Bessemer converter in 1856 and the subsequent development of th</p><p>  The most serious disadvantage of steel is that it oxidizes easily and must be protected by paint or some other suitable coating. When

18、 steel is used in an enclosure where a fire could  occur, the steel members must be encased in a suitable fire-resistant enclosure such as masonry, concrete. Normally, steel members will not fail in a brittle manner unle

19、ss an unfortunate combination of metallurgical composition, low temperature, and bi-or triaxial stress exists.</p><p>  Structural aluminum is still not widely used in civil engineering structures, though it

20、s use  is steadily increasing. By a proper selection of the aluminum alloy and its heat treatment, a  wide variety of strength characteristics may be obtained. Some of the alloys exhibit  stress-strain characteristics si

21、milar those of structural steel, except that the modulus of elasticity for the initial linearly elastic portion is about 10,000,000 psi (700,000 kgf/cm*cm) or about one-third that of steel. Li</p><p>  Rein

22、forced and prestesses concrete share with structural material. Natural cement  concretes have been used for centuries. Modern concrete construction dates from the middle of  the nineteenth century, though artificial Port

23、land cement was patented by Aspidin, an  Englishman, about 1825. Although several builders and engineers experimented with the use of steel-reinforced concrete in the last half of the nineteenth century, its dominant use

24、 as a  building material dates from the early decades of</p><p>  Plain (unreinforced) concrete not only is a heterogeneous material but also has one very serious defect as a structural material, namely, its

25、 very limited tensile strength, which is only of the order of one-tenth its compressive strength. Not only is tensile failure in concrete of a  brittle type, but likewise compression failure occurs in a relatively brittl

26、e fashion without being preceded by the forewarning of large deformations. (Of course, in reinforced-concrete construction, ductile behavio</p><p>  With all these potentially serious disadvantages, engineer

27、s have learned to design and  build beautiful, durable, and economical reinforced-concrete structures for practically all kinds  of structural requirements. This has been accomplished by careful selection of the design d

28、imensions and the arrangement of the steel reinforcement, development of proper cements, selection of proper aggregates and mix proportions, careful control of mixing, placing, and  curing techniques and imaginative deve

29、lo</p><p>  The versatility of concrete, the wide availability of its component materials, the unique  ease of shaping its form to meet strength and functional requirements, together with the  exciting poten

30、tial of further improvements and development of not only the newer prestressed  and precast concrete construction but also the conventional reinforced concrete construction, combine to make concrete a strong competitor o

31、f other materials in a very large fraction of structures.</p><p>  In modern times, with the increased use of steel and reinforced-concrete construction,  wood has been relegated largely to accessory use dur

32、ing construction, to use in temporary and secondary structures, and to use for secondary members of permanent construction. Modern technology in the last sixty years has revitalized wood as a structural material, however

33、, by developing vastly improved timber connectors, various treatments to increase the durability of wood, and laminated wood made of thin la</p><p>  Materials with future possibilities are the engineering p

34、lastics and the exotic metals and  their alloys, such as beryllium, tungsten, tantalum, titanium, molybdenum, chromium,  vanadium, and niobium. There are many different plastics available, and the mechanical  properties

35、exhibited by this group of materials vary over a wide range that encompasses the  range of properties available among the more commonly used structural materials. Thus in  many specific design applications it is possible

36、 to</p><p>  Another materials development with interesting possibilities is that of composites  consisting of a matrix reinforced by fibers or fiber like particles. Although  glass-fiber-reinforced composit

37、es with a glass or plastic matrix have been used for years, they appear to have much broader possibilities for a large variety of secondary structural  components. Fiber-reinforced concrete is another composite being act

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論