版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> 畢業(yè)論文(設(shè)計(jì))外文翻譯</p><p> 文 獻(xiàn) 名 稱 The History Engineering Thermodynamics </p><p> 院 (系) 物理科學(xué)與技術(shù)學(xué)院 </p><p> 專 業(yè) 班 級(jí) 物理10803
2、 </p><p> 學(xué) 生 姓 名 劉雍林 </p><p> 指 導(dǎo) 教 師 趙杰 </p><p> 翻譯完成日期 2012年3月18日 </p><p><b&
3、gt; 工程熱力學(xué)的歷史</b></p><p><b> 史琳著,劉雍林譯</b></p><p> 熱力學(xué)是研究熱現(xiàn)象中,物質(zhì)系統(tǒng)在平衡時(shí)的性質(zhì)和建立能量的平衡關(guān)系,以及狀態(tài)發(fā)生變化時(shí),系統(tǒng)與外界相互作用的學(xué)科。 </p><p> 工程熱力學(xué)是熱力學(xué)最先發(fā)展的一個(gè)分支,它主要研究熱能與機(jī)械能和其他能量之間相互轉(zhuǎn)換的
4、規(guī)律及其應(yīng)用,是機(jī)械工程的重要基礎(chǔ)學(xué)科之一。 </p><p> 工程熱力學(xué)的基本任務(wù)是:通過(guò)對(duì)熱力系統(tǒng)、熱力平衡、熱力狀態(tài)、熱力過(guò)程、熱力循環(huán)和工質(zhì)的分析研究,改進(jìn)和完善熱力發(fā)動(dòng)機(jī)、制冷機(jī)和熱泵的工作循環(huán),提高熱能利用率和熱功轉(zhuǎn)換效率。 </p><p> 為此,必須以熱力學(xué)基本定律為依據(jù),探討各種熱力過(guò)程的特性;研究氣體和液體的熱物理性質(zhì),以及蒸發(fā)和凝結(jié)等相變規(guī)律;研究溶液特
5、性也是分析某些類型制冷機(jī)所必需的。現(xiàn)代工程熱力學(xué)還包括諸如燃燒等化學(xué)反應(yīng)過(guò)程,溶解吸收或解吸等物理化學(xué)過(guò)程,這就又涉及化學(xué)熱力學(xué)方面的基本知識(shí)。 </p><p> 工程熱力學(xué)是關(guān)于熱現(xiàn)象的宏觀理論,研究的方法是宏觀的,它以歸納無(wú)數(shù)事實(shí)所得到的熱力學(xué)第一定律、熱力學(xué)第二定律和熱力學(xué)第三定律作為推理的基礎(chǔ),通過(guò)物質(zhì)的壓力 、溫度、比容等宏觀參數(shù)和受熱、冷卻、膨脹、收縮等整體行為,對(duì)宏觀現(xiàn)象和熱力過(guò)程進(jìn)行研究。
6、 </p><p> 這種方法,把與物質(zhì)內(nèi)部結(jié)構(gòu)有關(guān)的具體性質(zhì),當(dāng)作宏觀真實(shí)存在的物性數(shù)據(jù)予以肯定,不需要對(duì)物質(zhì)的微觀結(jié)構(gòu)作任何假設(shè),所以分析推理的結(jié)果具有高度的可靠性,而且條理清楚。這是它的獨(dú)特優(yōu)點(diǎn)。 </p><p> 古代人類早就學(xué)會(huì)了取火和用火,不過(guò)后來(lái)才注意探究熱、冷現(xiàn)象的實(shí)質(zhì)。但直到17世紀(jì)末,人們還不能正確區(qū)分溫度和熱量這兩個(gè)基本概念的本質(zhì)。在當(dāng)時(shí)流行的“熱質(zhì)說(shuō)”統(tǒng)治下
7、,人們誤認(rèn)為物體的溫度高是由于儲(chǔ)存的“熱質(zhì)”數(shù)量多。1709~1714年華氏溫標(biāo)和1742~1745年攝氏溫標(biāo)的建立,才使測(cè)溫有了公認(rèn)的標(biāo)準(zhǔn)。隨后又發(fā)展了量熱技術(shù),為科學(xué)地觀測(cè)熱現(xiàn)象提供了測(cè)試手段,使熱學(xué)走上了近代實(shí)驗(yàn)科學(xué)的道路。 </p><p> 1798年,朗福德觀察到用鉆頭鉆炮筒時(shí),消耗機(jī)械功的結(jié)果使鉆頭和筒身都升溫。1799年,英國(guó)人戴維用兩塊冰相互摩擦致使表面融化,這顯然無(wú)法由“熱質(zhì)說(shuō)”得到解釋。
8、1842年,邁爾提出了能量守恒理論,認(rèn)定熱是能的一種形式,可與機(jī)械能互相轉(zhuǎn)化,并且從空氣的定壓比熱容與定容比熱容之差計(jì)算出熱功當(dāng)量。 </p><p> 英國(guó)物理學(xué)家焦耳于1840年建立電熱當(dāng)量的概念,1842年以后用不同方式實(shí)測(cè)了熱功當(dāng)量。1850年,焦耳的實(shí)驗(yàn)結(jié)果已使科學(xué)界徹底拋棄了“熱質(zhì)說(shuō)”。公認(rèn)能量守恒、能的形式可以互換的熱力學(xué)第一定律為客觀的自然規(guī)律。能量單位焦耳就是以他的名字命名的。 熱力學(xué)的
9、形成與當(dāng)時(shí)的生產(chǎn)實(shí)踐迫切要求尋找合理的大型、高效熱機(jī)有關(guān)。1824年,法國(guó)人卡諾提出著名的卡諾定理,指明工作在給定溫度范圍的熱機(jī)所能達(dá)到的效率極限,這實(shí)質(zhì)上已經(jīng)建立起熱力學(xué)第二定律。但受“熱質(zhì)說(shuō)”的影響,他的證明方法還有錯(cuò)誤。1848年,英國(guó)工程師開(kāi)爾文根據(jù)卡諾定理制定了熱力學(xué)溫標(biāo)。1850年和1851年,德國(guó)的克勞修斯和開(kāi)爾文先后提出了熱力學(xué)第二定律,并在此基礎(chǔ)上重新證明了卡諾定理。</p><p> 18
10、50~1854年,克勞修斯根據(jù)卡諾定理提出并發(fā)展了熵的概念。熱力學(xué)第一定律和第二定律的確認(rèn),對(duì)于兩類“永動(dòng)機(jī)”的不可能實(shí)現(xiàn)作出了科學(xué)的最后結(jié)論,正式形成了熱現(xiàn)象的宏觀理論熱力學(xué)。同時(shí)也形成了“工程熱力學(xué)”這門(mén)技術(shù)科學(xué),它成為研究熱機(jī)工作原理的理論基礎(chǔ),使內(nèi)燃機(jī)、汽輪機(jī)、燃?xì)廨啓C(jī)和噴氣推進(jìn)機(jī)等相繼取得迅速進(jìn)展。 </p><p> 與此同時(shí),在應(yīng)用熱力學(xué)理論研究物質(zhì)性質(zhì)的過(guò)程中,還發(fā)展了熱力學(xué)的數(shù)學(xué)理論,找到
11、了反映物質(zhì)各種性質(zhì)的相應(yīng)的熱力學(xué)函數(shù),研究了物質(zhì)在相變、化學(xué)反應(yīng)和溶液特性方面所遵循的各種規(guī)律 。1906年,德國(guó)的能斯脫在觀察低溫現(xiàn)象和化學(xué)反應(yīng)中發(fā)現(xiàn)熱定理;1912年,這個(gè)定理被修改成熱力學(xué)第三定律的表述形式。 </p><p> 二十世紀(jì)初以來(lái),對(duì)超高壓、超高溫水蒸汽等物性,和極低溫度的研究不斷獲得新成果。隨著對(duì)能源問(wèn)題的重視,人們對(duì)與節(jié)能有關(guān)的復(fù)合循環(huán)、新型的復(fù)合工質(zhì)的研究發(fā)生了很大興趣。</p
12、><p> The history of Engineering Thermodynamics</p><p> Shilin,Liuyonglin</p><p> Thermodynamics is the study of thermal phenomena, the material system in equilibrium and the establ
13、ishment of the nature of the relationship between energy balance, as well as the state changes, the system of academic interaction with the outside world.</p><p> Engineering thermodynamics Thermodynamics i
14、s a branch of the first development of its main research in heat and mechanical energy and other energy conversion between the law and its application in mechanical engineering is an important foundation for one subject.
15、 Thermodynamics of the basic tasks of the project is: through the thermal system, heat balance, heat, and thermal processes, and working fluid thermodynamic cycle analysis, improve and perfect heat engine, refrigerat
16、or and heat pump </p><p> To this end, the basic law of thermodynamics must be based on a variety of thermodynamic properties of the process; study the thermal gas and liquid physical properties, as well as
17、 evaporation and condensation, such as phase-change rule; study analysis of solution properties is necessary for certain types of refrigerator . Modern Engineering Thermodynamics include chemical reactions such as combus
18、tion processes, such as dissolving the physical absorption or desorption chemical processes, which a</p><p> Engineering Thermodynamics is on the macro-theory of thermal phenomena, the study is a macro, it
19、has been summarized by numerous facts of the first law of thermodynamics, and the second law of thermodynamics third law of thermodynamics as a basis for reasoning by the material pressure, temperature , specific volume
20、and other macro parameters and heating, cooling, expansion, contraction, such as the overall behavior of the macro-phenomena and to study the thermal process. </p><p> In this way, the internal structur
21、e and material to the specific nature, as a macro-physical properties of real data to be sure, do not need to micro-structure of the material to make any assumptions, so analysis of the results of reasoning with a high d
22、egree of reliability, and coherent . This is its unique advantages. </p><p> Ancient man long ago learned to make fire and use of fire, but then pay attention to explore the hot, cold real phenomenon. H
23、owever, until the end of the 17th century, people still can not correctly distinguish between temperature and heat of these two basic concepts of nature. Popular at that time, "said Heat and Mass Transfer" unde
24、r the rule, people mistakenly believe that the high temperature object is stored as a result of "thermal mass" number. 1709 ~ Fahrenheit temperature scale in 1714 an</p><p> 1798, Langford was obs
25、erved drilling with drill barrel, the consumption of mechanical work and the result are warming bit. In 1799, the British David with two resulting in friction between the ice surface melting, which is obviously not from
26、the "Heat and Mass said," be explained. 1842, Meyer made the conservation of energy theory, that heat is a form of energy can be transformed into mechanical energy with each other, and the air pressure from the
27、 specific heat capacity with constant volume spe</p><p> British physicist Joule heating in the equivalent in 1840 to establish the concept in 1842 measured in different ways beyond the mechanical equivalen
28、t of heat. In 1850, the experimental results of Joule has completely abandoned the scientific community, "Heat and Mass said." Recognized conservation of energy can be interchangeable in the form of first law o
29、f thermodynamics for the objective laws of nature. Energy unit Joule is named after him. </p><p> Thermodynamics of the formation and practice at the time the production of an urgent need to find a reas
30、onable large-scale, highly efficient heat engine-related. In 1824, the French out of the famous Kano theorem, the work specified in a given temperature range the heat engine's efficiency can reach the limit, which es
31、sentially has established the second law of thermodynamics. However, by the "heat and mass transfer that" the impact that his methods are proven wrong. 1848, British engineer Kelvi</p><p> 1850 ~
32、1854, according to Carnot theorem Clausius proposed and developed the concept of entropy. First law of thermodynamics and second law of recognition, for two types of "perpetual motion machine" make the impossib
33、le to realize the final conclusions of science, the official formation of the thermal theory of thermodynamics of macro phenomena. At the same time the formation of the "Engineering Thermodynamics" This technol
34、ogical sciences, it became the study of heat engine working principle of </p><p> At the same time, research in the application of thermodynamic theory of the nature of the course material, but also develop
35、ed the mathematical theory of thermodynamics, the various substances found in nature to reflect the corresponding thermodynamic function was studied in the phase-change material, chemical reaction and the solution proper
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- ※《工程熱力學(xué)》
- 工程熱力學(xué)
- 工程熱力學(xué)
- 工程熱力學(xué) 1
- 工程熱力學(xué) 1316
- 工程熱力學(xué)考試大綱
- 工程熱力學(xué)課后答案
- 工程熱力學(xué)(同名19310)
- 【工程熱力學(xué)講義大全】
- 工程熱力學(xué)考試大綱
- 工程熱力學(xué)課程綱要
- 工程熱力學(xué)課后答案
- 空調(diào)專業(yè)畢業(yè)設(shè)計(jì)外文翻譯--工程熱力學(xué)和制冷循環(huán)
- 工程熱力學(xué)考研大綱
- 工程熱力學(xué)雙語(yǔ)教學(xué)
- 工程熱力學(xué)課后答案
- 工程熱力學(xué)0緒論
- 高等工程熱力學(xué)教案
- 工程熱力學(xué)答案(全)
- 工程熱力學(xué)的發(fā)展現(xiàn)狀
評(píng)論
0/150
提交評(píng)論