版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
1、<p><b> 附 錄</b></p><p><b> 英文原文</b></p><p> A Brief Overview of ad hoc Networks:</p><p> Challenges and Directions</p><p> One of the
2、 most vibrant and active “new” fields today is that of ad hoc networks. Significant research in this area has been ongoing for nearly 30 years, also under the names packet radio or multi-hop networks. </p><p&g
3、t; ad hoc network is a (possibly mobile) collection of communications devices (nodes) that wish to communicate, but have no fixed infrastructure available, and have no pre-determined organization of available links. Ind
4、ividual nodes are responsible for dynamically discovering which other nodes they can directly communicate with. </p><p> Ad hoc networking is a multi-layer problem. The physical layer must adapt to rapid ch
5、anges in link characteristics. The multiple access control (MAC) layer needs to minimize collisions, allow fair access, and semi-reliably transport data over the shared wireless links in the presence of rapid changes and
6、 hidden or exposed terminals. The network layer needs to determine and distribute information used to calculate paths in a way that maintains efficiency when links change often and bandwidth is a</p><p> Ad
7、 hoc networks are suited for use in situations where infrastructure is either not available, not trusted, or should not be relied on in times of emergency. A few examples include: military solders in the field; sensors s
8、cattered throughout a city for biological detection; an infrastructureless network of notebook computers in a conference or campus setting; the forestry or lumber industry; rare animal tracking; space exploration; unders
9、ea operations; and temporary offices such as campaign head</p><p><b> History</b></p><p> The history of ad hoc networks can be traced back to 1972 and the DoD-sponsored Packet Rad
10、io Network (PRNET), which evolved into the Survivable Adaptive Radio Networks(SURAN) program in the early 1980s [l]. The goal of these programs was to provide packetswitched networking to mobile battlefield elements in a
11、n infrastructureless, hostile environment (soldiers, tanks, aircraft, etc., forming the nodes in the network).</p><p> In the early 1990s a spate of new developments signaled a new phase in ad hoc networkin
12、g. Notebook computers became popular, as did open-source software, and viable communications equipment based on RF and infrared. The idea of an infrstructureless collection of mobile hosts was proposed in two conference
13、papers [2,3], and the IEEE 802.11 subcommittee adopted the term “ad hoc networks.” The concept of commercial (non-military) ad hoc networking had arrived. Other novel non-military possibilities</p><p> At a
14、round the same time, the DoD continued from where it left off, funding programs such as the Global Mobile Information Systems(GloMo), and the Near-term Digital Radio(NTDR). The goal of GloMo was to provide office-environ
15、ment Ethernet-type multimedia connectivity anytime, anywhere, in handheld devices. Channel access approaches were now in the CSMA/CA and TDMA molds, and several novel routing and topology control schemes were developed.
16、The NTDR used clustering and linkstate routing, and self</p><p> Spurred by the growing interest in ad hoc networking, a number of standards activities and commercial standards evolved in the mid to late’90
17、s.Within the IETF, the Mobile Ad hoc Networking(MANET) working group was horn, and sought to standardize routing protocols for ad hoc networks. The development of routing within the MANET working group and the larger com
18、munity forked into reactive (routes ondemand) and proactive (routes ready-to-use) routing protocols [4]. The 802.11 subcommittee standardiz</p><p> Open Problems</p><p> Despite the long histo
19、ry of ad hoc networking, there are still quite a number of problems that are open. Since ad hoc networks do not assume the availability of a fixed infrastructure, it follows that individual nodes may have to rely on port
20、able, limited power sources. The idea of energy-efficiency therefore becomes an important problem in ad hoc networks. Surprisingly,there has been little published work in the area of energy-efficiency of ad hoc networks
21、until fairly recently. Most existing s</p><p> The ability of fixed, wireless networks to satisfy quality of service (QoS) requirements is another open problem. Ad hoc networks further complicate the known
22、QoS challenges in wireline networks with RF channel characteristics that often change unpredictably, along with the difficulty of sharing the channel medium with many neighbors, each with its own set of potentially chang
23、ing QoS requirements. Reflecting the multi-layer nature of ad hoc networks, there are numerous attempts to improve the Qo</p><p> A similar multi-layer issue is that of security in ad hoc networks [10]. Sin
24、ce nodes use the shared radio medium in a potentially insecure environment, they are susceptible to denial of service (DoS) attacks that are harder to track down than in wired networks. Also, since a large portion of the
25、 network nodes will be dynamically reorganizing and forwarding packets on behalf of others, ad hoc networks are particularly susceptible to the injection of bogus network control traffic. Finally, ad hoc </p><
26、p> Robots and sensors also provide new hardware capabilities ripe for new methods of enhancing ad hoc efficiency. Robots, for example,have a tight integration between the processes of movement, decision-making, and n
27、etworking that allow them to modify their actions while taking into account the effects on many different system aspects [12]. Similarly,sensors are often deployed in a way that makes their roles and capabilities redunda
28、nt, suggesting new ways of combining application knowledge of deliv</p><p> Finally, a problem that overarches all these others is the lack of well defined and widely accepted models for RF path attenuation
29、, mobility, and traffic. These tightly interrelated models are needed for quantifying and comparing ad hoc system performance to a common baseline.The physical processes of refraction, reflection, and scattering of RF ra
30、diation is moderately well understood but difficult to quantify in detail when including a large number of complex objects such as foliage, cars, or b</p><p> The Future</p><p> Imagine the fo
31、llowing scenarios: a wireless mesh of rooftop-mounted ad hoc routers; an ad hoc network of cars for instant traffic and other information; sensors and robots forming a multimedia network that allows remote visualization
32、and control; multiple airborne routers (from tiny robots to blimps) automatically providing connectivity and capacity where needed (e.g., at a football game); an ad hoc network of spacecraft around and in transit between
33、 the Earth and Mars. </p><p> These may seem like science fiction, but are in fact ideas pursued seriously by the ad hoc research community. While only time can tell which of these imagined scenarios will b
34、ecome real, the above offers a glimpse into both the technological potential and the evolving state of the art. We discuss in this section the forces at play that are likely to shape the future of ad hoc networking, and
35、discuss the directions in which it may evolve.</p><p> To appreciate the role ad hoc networks are likely to play in the future, consider this: bandwidth-hungry applications and the laws of physics drive wir
36、eless architectures away from cellular toward ad hoc. This is because more capacity implies the need for a higher communications bandwidth and better spatial spectral reuse.Higher bandwidth is found at higher frequencies
37、,where the propagation is dismal. Further, mobile devices have to be power-thrifty. Propagation,spectral reuse, and energy issues</p><p> The other main impetus to ad hoc networks comes from the rapidly imp
38、roving communications technologies.Wireless communication devices are getting smaller, cheaper, more sophisticated, and hence more ubiquitous.Exploitation of these technologies for better ad hoc networking gives rise to
39、new problems that point to new research. For instance, the use of smart antennas in ad hoc networking requires new medium access and neighbor discovery protocols.The ability to dynamically alter spread spectrum c</p&g
40、t;<p> How are ad hoc networks likely to evolve? It is likely that the nodes themselves will be smaller,cheaper, more capable and probably conformal,and come in all forms. Indoor ad hoc networks (perhaps based on
41、 Bluetooth, Wireless LAN, or similar technologies) will probably be used to connect smart appliances to the Internet. Mesh-based last-mile solutions will increase in popularity and may even be the dominant solution.Milit
42、ary ad hoc networks will have higher capacities and support multimedia appl</p><p> Finally, there is the utopian idea of a "global infosphere" where all network elements form a gigantic ad hoc wi
43、reless network using unlicensed spectrum, bypassing the existing infrastructure.While fascinating from a research viewpoint, the realization of this vision will depend not only on overcoming the capacity and other hurdle
44、s, but also the pragmatics of a "cooperative" network. Notwithstanding our predictions,however, like the Internet, which existed for more than 20 years before the World</p><p><b> 二、英文翻譯<
45、/b></p><p> ad hoc網絡的一個簡要概述:挑戰(zhàn)與研究方向 </p><p> ad hoc網絡已成為當今最為鮮明活躍的一個新的領域,在這個領域已經將近有30年的重點研究下命名為“分組無線網”或“多跳網絡”。</p><p> ad hoc網絡是一個(可能是移動的)希望相互通信的沒有固定基礎設施的沒有預先組織有效連接的通信設備(點)的集合。
46、各個節(jié)點負責動態(tài)地發(fā)現(xiàn)其他的節(jié)點中哪些是可以與自己直接進行通信。</p><p> ad hoc網絡是一個多層問題。物理層必須與快速變化的鏈路特性相適應,媒體介質接入控制(MAC)層盡量減少碰撞,允許公平接入,在共享無線鏈路快速變化和存在隱藏或暴露終端條件下進行較可靠的傳輸數據,網絡層需要確定和傳輸用于計算在鏈路質量時變和帶寬有限條件下保持高效路由的信息,它也需要與傳統(tǒng)的無線ad hoc互聯(lián)網和執(zhí)行功能(比如在
47、不斷變化的環(huán)境中自動配置)順利的融合在一起,傳輸層需要處理與有線網絡差別很大的延遲和分組數據丟失統(tǒng)計分析;最后,應用層需要處理與對等應用之間頻繁的斷連和重連以及變化范圍較大的延遲和分組數據丟失特性。</p><p> ad hoc網絡適合在以下情況下使用,要么是沒有固定的基礎設施可用的場合,要么在緊急情況下沒有依賴的場合,一些應用的例子包括:在野戰(zhàn)軍用通信應用方面;散布在一個城市的生物的傳感器檢測;在會議或校園
48、內的一個無筆記本計算機的通信設施的網絡;林業(yè)和木材工業(yè);稀有動物跟蹤;太空探索;海底作業(yè);臨時辦公,比如總統(tǒng)的競選。</p><p><b> 歷史</b></p><p> ad hoc網絡技術的起源可以追溯到1972年的美國國防部高級研究計劃局資助研究的戰(zhàn)場環(huán)境中的無線分組數據網(PRNET)[1],在20世紀80年代初發(fā)展成為具有抗毀性和自適應能力的網絡(S
49、URNAN)項目。該項目的目標是在沒有現(xiàn)成基礎設施可以利用、敵意環(huán)境中為移動戰(zhàn)場節(jié)點(戰(zhàn)士、坦克、飛機等)提供基于分組交換的網絡。</p><p> 在20世紀90年代初一連串的新發(fā)展標志著ad hoc網絡化進入一個新的階段。筆記本計算機的流行和基于無線和紅外技術通信設備的廣泛出現(xiàn),產生了計算機互聯(lián)的要求,為無線ad hoc網絡的應用提供了廣闊的空間。在文獻[2][3]中提到,IEEE 802.11委員會將這種
50、無基礎設施的移動主機網絡采用術語“ad hoc 網絡”一詞,已經形成了商業(yè) (非軍事)ad hoc網絡的概念,此外許多新型的非軍事發(fā)展可能(簡介中已經提到)也有了增長利益。</p><p> 大約在同一時間,美國國防部繼續(xù)資助曾停止過的項目,諸如全球移動信息系統(tǒng)GloMo和近期數字化無線電(NTDR)。GloMo的目標是用手持設備為辦公環(huán)境提供任何時間、任何地點的以太網類型的多媒體鏈接,采用CSMA/CA和TD
51、MA作為信道接入方式,并開發(fā)了幾種新的路由協(xié)議和拓撲控制方案。NTDR采用分群和鏈路狀態(tài)路由,并自組為兩層結構的ad hoc網絡。NTDR是美國軍方正在使用的實用網絡,也是當今惟一的實用(非原型)網絡。</p><p> 到了20世紀90年代中期,隨著ad hoc組網熱潮的到來,涌現(xiàn)了一系列標準活動和商業(yè)標準。在IETF成立了一個專門的移動ad hoc網絡MANET工作組,專門負責研究和開發(fā)具有數百個節(jié)點的移動
52、ad hoc網絡的路由算法,并制定相應的標準,其開發(fā)的路由協(xié)議派生為先應式和反應式路由協(xié)議[4]。IEEE 802.11委員會對基于CA和容許隱藏終端的MAC協(xié)議進行了標準化,雖然不是最優(yōu),但可用于構建ad hoc網絡原型。HIPERLAN和藍牙技術也為ad hoc組網提供了一些技術設備。</p><p><b> 面臨的挑戰(zhàn)</b></p><p> 盡管ad
53、hoc網絡的歷史悠久,仍然存在很多問題。由于ad hoc網絡無法利用固定基礎設施,因此,單個節(jié)點必須依靠可攜帶的有限電源。這種節(jié)能的想法在ad hoc網絡已成為一個重要的問題。令人驚訝的是直到最近才有一些有關ad hoc網絡的能源效率方面的發(fā)表著作?,F(xiàn)有ad hoc 網絡大多數節(jié)能解決方案圍繞減少電臺收發(fā)功率進行。在MAC及以上層可以選擇將收信機設置為睡眠狀態(tài),或通過可變的發(fā)射機輸出功率和選擇需要更多短距離跳數取代少的長距離跳數的路由[
54、8]實現(xiàn)。</p><p> 固定無線網絡滿足服務質量(QoS)能力要求是另一個要面對的問題。有線網絡的已知服務質量QoS的挑戰(zhàn)和RF信道特性的變化的不可預見性使得ad hoc網絡進一步復雜化,同時與許多鄰居共享信道也存在著困難,它們都有自己的隨時設置和變化所需求的服務質量??紤]到ad hoc網絡的多層特性,對MAC層的服務協(xié)議[9]作了很多改善服務質量問題的嘗試。為了滿足 QoS 要求的有效方式是一個更統(tǒng)一的
55、跨層設計和分層設計結合,這個想法違反了各種允許不同地區(qū)的堆棧來適應環(huán)境的傳統(tǒng)分層法,在某種程度上,考慮在其他層上的適應性和可利用的信息。</p><p> 在ad hoc網絡中類似多層問題的論點是安全問題[10]。共享無線環(huán)境的潛在的不安全因素使得節(jié)點比有線網的更容易受到拒絕服務 (DoS) 攻擊,更難追蹤。此外,由于很大一部分網絡節(jié)點的動態(tài)重配置和鄰居分組轉發(fā)容易被注入偽網絡控制業(yè)務中。最后,ad hoc網絡
56、可能受到各種特定的安全攻擊的受害者,如不停發(fā)射直至消耗完節(jié)點的電源。</p><p> 機器人與傳感器網絡已具有采用新方法提高網絡效率的新硬件能力,這為提高ad hoc性能做好準備。機器人,舉例來說,有一間緊密結合的過程中,決策、網絡化等動作,讓他們改變他們的行為而考慮到許多不同的系統(tǒng)方面[12]的影響。同樣,傳感器常常在某種程度上針對他們的角色與功能提出冗余信息的應用知識與交付路由層[13]相結合的新方法。&
57、lt;/p><p> 最后,跨層切換設計是所有這些其他的問題中的一個,缺乏明確和通用模型的靈活性、射頻路徑衰減和通信。為量化需要特別的系統(tǒng)性能,我們對這些緊密相關的模型進行了分析比較,一個常見的諸如反射、折射、射頻輻射和散射的基本的物理過程的理解是相當容易的,但卻很難量化,包括大量的復雜的對象,如樹葉、汽車、建筑。相比之下,與移動節(jié)點的通信流模式可以肯定很容易進行詳細描述,但依賴于目標程序,缺乏現(xiàn)有系統(tǒng)的有效研究,
58、連接性、 移動性和應用程序之間的可能相互作用,將導致現(xiàn)有模型的含糊不清。</p><p><b> 展望</b></p><p> 想象一下以下情況:一個無線網格的天臺安裝ad hoc路由器;ad hoc網絡的汽車提供即時交通和其他信息;傳感器和機器人形成網絡多媒體,允許遠程可視化和遠程控制;多個(來自微小機器人)機載路由器在有需要時自動提供連接和容量(例如,在一
59、場足球比賽中);航天器周圍的ad hoc網絡和在地球和火星之間的運輸途中。</p><p> 這些可能看起來像是科幻小說,但事實上是ad hoc研究委員會的一個嚴謹的科學追求思想,只有時間能告訴那些想象的場景變成現(xiàn)實,而上述提供具有技術潛力和不斷發(fā)展的現(xiàn)狀的一種展望。在本節(jié)中我們討論未來的ad hoc網絡,并討論了它在方向演進。</p><p> 鑒于ad hoc網絡在未來可能扮演的角
60、色,我們有如下考慮:帶寬需求的應用和物理性質使得移動單元對ad hoc無線體系結構分離。這是因為更大的容量需求意味著需要一個更高的通信帶寬和更好的空間譜復用,高頻率建立高帶寬的傳播是很難實現(xiàn)的,此外移動設備還要節(jié)省電源。光譜的重用和能源問題支持從單長無線鏈接(如小區(qū))轉為短鏈接(如在ad hoc網絡)網傳播。未來可能的潮流是由新興的初創(chuàng)企業(yè)證明,諸如屋頂通訊(現(xiàn)在諾基亞的一部分),網狀網絡、輻射網絡,用基于多徑網格技術取代傳統(tǒng)的3G架構
61、。</p><p> ad hoc網絡其他主要動力來自于迅速提高的通信技術。無線通信設備變得更小、更廉價、更精細,因此更為普遍。這些技術開發(fā)為更好地ad hoc網絡指出新的問題,引發(fā)新的研究。比如,利用智能天線在ad hoc組網需要新的媒體訪問和鄰居查找協(xié)議。動態(tài)地改變擴頻碼、調制方案和波形的功能需要在更高層次的相應創(chuàng)新。代表著一種無線電體系結構中的重要變化的軟件無線電提供更佳的靈活性,它適合移動自組網。<
62、;/p><p> ad hoc網絡容易發(fā)展嗎?在所有的網絡形式中,ad hoc網絡自身的節(jié)點更小、更廉價、更能勝任和可能形成。室內ad hoc網絡(也許是基于藍牙技術的無線局域網或類似的技術)可能會被用于智能電器到互聯(lián)網上的連接?;诰W格的最后一英里解決方案將會增加受歡迎程度,甚至可能是占主導地位的解決方案。軍事ad hoc網絡將會有更高的能力,會支持多媒體應用,會更有自適應性、隱身技術,與進化系統(tǒng),這些都是對所有
63、戰(zhàn)場元素、移動或固定的多媒體網絡。 </p><p> 最后,存在一個“烏托邦”思想是形成一個全部采用巨大無線ad hoc網絡的頻譜,繞過現(xiàn)有的基礎結構的全球信息網絡。同時吸引人的地方是,從研究角度來看,這個想象的實現(xiàn)將不僅取決于容量和其他障礙克服,而且取決于“協(xié)作”網絡的因果研究法。盡管我們的預測是像互聯(lián)網一樣在萬維網出現(xiàn)之前存在的時間超過20年,它可能是一個令人驚訝的“殺手應用程序”式的ad hoc網絡的未
64、來。</p><p><b> 三、源程序</b></p><p><b> ?。?)隨機運動軌跡</b></p><p> function b1</p><p><b> n=50</b></p><p> x=rand(n,1)*120;&
65、lt;/p><p> y=rand(n,1)*120; </p><p> plot(x,y);</p><p> ?。?)L3,L2切換</p><p><b> clear;</b></p><p> counter2=0; counter3=0;</p><p&g
66、t; a(1:j)=[];</p><p> b(1:j)=[];</p><p> d1(1:j)=[];</p><p> for i=1:100</p><p><b> x=0;</b></p><p><b> y=0; </b></p>
67、<p><b> j=1;</b></p><p><b> a(1:j)=x;</b></p><p><b> b(1:j)=y;</b></p><p><b> j=j+1;</b></p><p> dir=rand(1)*
68、2*pi; </p><p> v=rand(1)*5+10; </p><p> for t=0:0.1:30</p><p><b> T=t/5;</b></p><p> T1=floor(T);</p><p&
69、gt;<b> if T==T1</b></p><p> dir=rand(1)*2*pi; </p><p> v=rand(1)*5+10; </p><p> end </p>
70、;<p> x=x+v*t*cos(dir);</p><p> y=y+v*t*sin(dir);</p><p><b> a(1:j)=x;</b></p><p><b> b(1:j)=y;</b></p><p> d=sqrt(a(1:j).*a(1:j)+b(
71、1:j).*b(1:j));</p><p> d1(1:j)=d;</p><p> if (d1(1:j)>=107)&(d1(1:j)<=120)</p><p> counter3=counter3+1; </p><p><b> j=j+1;</b></p>&
72、lt;p><b> break</b></p><p><b> end</b></p><p><b> t=t+0.1;</b></p><p><b> T=t/5;</b></p><p> T1=floor(T);</p&g
73、t;<p><b> if T==T1</b></p><p> dir=rand(1)*2*pi; </p><p> v=rand(1)*5+10; </p><p> end
74、 </p><p> x=x+v*t*cos(dir);</p><p> y=y+v*t*sin(dir);</p><p><b> a(1:j)=x;</b></p><p><b> b(1:j)=y;</b></p><p> d=sqrt(a(1:j).
75、*a(1:j)+b(1:j).*b(1:j));</p><p> d1(1:j)=d;</p><p> if ( d1(1:j)>=120)</p><p> counter2=counter2+1;</p><p><b> j=j+1;</b></p><p> brea
76、k </p><p><b> end</b></p><p><b> end </b></p><p> end </p><p> m=counter3/counter2;</p><p>
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- ad_hoc網絡aodv路由協(xié)議算法設計
- 野戰(zhàn)移動Ad_Hoc網絡認證與安全路由研究.pdf
- 計算機專業(yè)外文翻譯----一種新型的移動ad_hoc網絡跨層服務質量模型
- 基于UWB的交通Ad_hoc網絡的定位技術研究.pdf
- 一個基于ECC的Ad hoc網絡安全路由算法.pdf
- 基于NS2的移動Ad_Hoc網絡QoS路由協(xié)議的優(yōu)化與實現(xiàn).pdf
- 外文翻譯----一種新型的移動ad hoc網絡跨層服務質量模型
- 陳云與一個時代的企業(yè)方向
- 一種Ad hoc網絡路由的研究與改進.pdf
- 一個溫暖世界的方向
- 一個企業(yè)轉型的理論【外文翻譯】
- 創(chuàng)建一個flash網頁【外文翻譯】
- 給自己一個方向
- 給自己一個方向
- 移動Ad hoc網絡路由的研究與改進.pdf
- 培訓系統(tǒng)----一個觀點【外文翻譯】
- 一個完美的市場【外文翻譯】
- 外文翻譯--一個良好的公路的基礎
- Ad Hoc網絡擁塞檢測與控制的研究.pdf
- 移動Ad hoc網絡互聯(lián)的研究與實現(xiàn).pdf
評論
0/150
提交評論