版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、Due to olfactory pathway is relatively simple and well knows functionally and morphologically, it is an interesting system for classification tasks. Many different aspects of olfaction,such as the nature of stimuli or th
2、e mechanisms of reception and central processing have been widely studied and modeled on last decades.This dissertation research a bionic neural network based on main features of the olfactory system and its applications
3、 to different pattern recognition tasks.
Firstly,this thesis introduces the main issues on olfactory neural system and odour researches during the last years.
Secondly, after describing the anatomic structu
4、re of olfactory neural system some olfactory model like K-set of Prof.Freeman,the bulb model of Prof.Li and cortical model of Prof Liljenstrom are exposed.
Thirdly, a bionic model mimics the olfactory system and i
5、ts application on pattern recognition processes is researched. Based on bulb and cortical are as of the olfactory system the model mimics the main features of the olfactory system.One of the main characteristic of our mo
6、del is that patterns come into the network by the bulb model and using afferent connecTiO2 the patterns are learned and stored for future recall on the cortical model.In order to improve the classification task a modifie
7、d Hebbian learning rule is applied to bulb and cortical model.Furthermore optimization processes are applied to improve the model performance.
Four different standard datasets are used to test the pattern recognit
8、ion capacity of our bionic model.The performance of our bionic model is also compared with some classical ANNs and with former results obtained by other researchers using same datasets. Finally the classification results
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 嗅覺系統(tǒng)神經(jīng)網(wǎng)絡(luò)模型研究及其在人工嗅覺與虹膜識(shí)別中的應(yīng)用.pdf
- 多態(tài)統(tǒng)計(jì)模式識(shí)別模型及應(yīng)用研究.pdf
- 基于MARKOV模型的模式識(shí)別及應(yīng)用.pdf
- 模式識(shí)別技術(shù)及其在文字識(shí)別領(lǐng)域的應(yīng)用研究.pdf
- 模式識(shí)別中的樣本選擇研究及其應(yīng)用.pdf
- 模式識(shí)別技術(shù)及其在氣象研究中的應(yīng)用.pdf
- 仿生模式識(shí)別應(yīng)用研究.pdf
- 配電系統(tǒng)接線模式模型和模式識(shí)別的研究與實(shí)現(xiàn).pdf
- 模式識(shí)別核方法的理論研究及其應(yīng)用.pdf
- 基于粒度計(jì)算的模式識(shí)別及其應(yīng)用研究.pdf
- 角檢測(cè)及其在模式識(shí)別中的應(yīng)用.pdf
- 水資源智能模式識(shí)別方法及其應(yīng)用.pdf
- 電潛泵故障模式識(shí)別模型研究.pdf
- 面向領(lǐng)域的情感語(yǔ)義模式識(shí)別及其應(yīng)用.pdf
- 流形學(xué)習(xí)及其在模式識(shí)別中的應(yīng)用.pdf
- 動(dòng)態(tài)模式識(shí)別方法研究及應(yīng)用.pdf
- 模式識(shí)別程序及其運(yùn)行結(jié)果
- 前向多層神經(jīng)網(wǎng)絡(luò)模式識(shí)別及其應(yīng)用研究.pdf
- 基于模糊模式識(shí)別的木材孔洞缺陷識(shí)別模型的研究.pdf
- 嗅覺神經(jīng)系統(tǒng)識(shí)別機(jī)理模型仿真研究.pdf
評(píng)論
0/150
提交評(píng)論