2023年全國(guó)碩士研究生考試考研英語(yǔ)一試題真題(含答案詳解+作文范文)_第1頁(yè)
已閱讀1頁(yè),還剩61頁(yè)未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、隨著信息技術(shù)的快速發(fā)展,特別是計(jì)算機(jī)技術(shù)的不斷普及,“數(shù)據(jù)豐富而信息貧乏”這一矛盾顯得日益突出,數(shù)據(jù)挖掘技術(shù)正是迎合了這一需求,同時(shí)結(jié)合數(shù)理統(tǒng)計(jì)、人工智能、神經(jīng)網(wǎng)絡(luò)和信息技術(shù)等學(xué)科出現(xiàn)的一項(xiàng)新技術(shù),并得到了迅速發(fā)展。數(shù)據(jù)挖掘的主要目的是從數(shù)據(jù)集中發(fā)現(xiàn)隱含的、事先未知的和用戶感興趣的知識(shí)。作為一種有效的數(shù)據(jù)分析技術(shù),近年來(lái)分類(lèi)(Classification)已成為數(shù)據(jù)挖掘領(lǐng)域中的一項(xiàng)重要研究?jī)?nèi)容,并廣泛應(yīng)用于商業(yè)、電子商務(wù)、基因工程和醫(yī)學(xué)

2、等諸多領(lǐng)域。
   復(fù)雜網(wǎng)絡(luò)作為一門(mén)新興學(xué)科,在不同的領(lǐng)域(如生態(tài)、人口、經(jīng)濟(jì)、社會(huì)、地理、軍事、醫(yī)學(xué))中有著很強(qiáng)的應(yīng)用背景,倍受廣大學(xué)者的青睞和關(guān)注,已成為一個(gè)充滿生命力的交叉研究領(lǐng)域。一切事物都是相互作用的表現(xiàn),大多可以通過(guò)復(fù)雜網(wǎng)絡(luò)來(lái)表現(xiàn),如物理學(xué)研究物體間最基本的相互作用;化學(xué)研究分子間的相互作用;生物學(xué)研究基因、蛋白質(zhì)以及生物體之間的相互作用;社會(huì)科學(xué)研究人和各種人類(lèi)組之間的相互作用;分類(lèi)問(wèn)題研究數(shù)據(jù)點(diǎn)之間的相互作用。因

3、此,事物作為系統(tǒng),其結(jié)構(gòu)可以抽象為網(wǎng)絡(luò),各類(lèi)作用體抽象為網(wǎng)絡(luò)節(jié)點(diǎn),各種相互作用抽象為節(jié)點(diǎn)之間的連接線或邊。基于這種思想,本文將數(shù)據(jù)集按照某種度量抽象成為復(fù)雜網(wǎng)絡(luò),結(jié)合復(fù)雜網(wǎng)絡(luò)的理論、成果和已有的某些分類(lèi)、聚類(lèi)方法對(duì)數(shù)據(jù)挖掘分類(lèi)問(wèn)題進(jìn)行了相關(guān)研究,提高了對(duì)大型數(shù)據(jù)庫(kù)中的數(shù)據(jù)進(jìn)行分類(lèi)的能力,具有一定的研究?jī)r(jià)值。
   復(fù)雜網(wǎng)絡(luò)的社團(tuán)探測(cè)與數(shù)據(jù)挖掘中分類(lèi)、聚類(lèi)問(wèn)題在本質(zhì)上是一樣的,因而社團(tuán)探測(cè)的研究和分類(lèi)問(wèn)題的研究在某種角度上是一脈相

4、承的。
   本文在復(fù)雜網(wǎng)絡(luò)的基礎(chǔ)上,對(duì)分類(lèi)問(wèn)題做了以下三個(gè)方面的工作:
   提出了一種基于K-means聚類(lèi)算法的復(fù)雜網(wǎng)絡(luò)社團(tuán)結(jié)構(gòu)劃分方法,豐富和發(fā)展了復(fù)雜網(wǎng)絡(luò)社團(tuán)探測(cè)理論和方法。算法基于Fortunato等人提出的邊的信息中心度,定義了節(jié)點(diǎn)的關(guān)聯(lián)度,并通過(guò)節(jié)點(diǎn)關(guān)聯(lián)度矩陣來(lái)進(jìn)行聚類(lèi)中心的選擇和節(jié)點(diǎn)聚類(lèi),從而將復(fù)雜網(wǎng)絡(luò)劃分成K個(gè)社團(tuán),然后通過(guò)模塊度來(lái)確定網(wǎng)絡(luò)理想的社團(tuán)結(jié)構(gòu)。該算法時(shí)間復(fù)雜度為線性的,適合大型網(wǎng)絡(luò)的社團(tuán)發(fā)

5、現(xiàn)。通過(guò)Zachary Karate Club和CollegePootball Network兩個(gè)經(jīng)典模型驗(yàn)證了該算法的可行性。
   遺傳算法作為一個(gè)成熟的理論,在分類(lèi)方面有著很大優(yōu)勢(shì),結(jié)合復(fù)雜網(wǎng)絡(luò)的部分新理論和遺傳算法的思想,提出了一種新的分類(lèi)方法。該方法將數(shù)據(jù)集按給定的相似度公式構(gòu)造出具有社團(tuán)結(jié)構(gòu)的網(wǎng)絡(luò),在此網(wǎng)絡(luò)的基礎(chǔ)上用遺傳算法的思想進(jìn)行分類(lèi)。算法引進(jìn)社團(tuán)模塊度作為適應(yīng)度函數(shù),并且提出了節(jié)點(diǎn)歸類(lèi)錯(cuò)誤率(NCM)對(duì)每次迭代

6、產(chǎn)生的解進(jìn)行糾錯(cuò),提高了分類(lèi)質(zhì)量和速度。實(shí)驗(yàn)證明該方法在分類(lèi)精度和分類(lèi)速度方面都非常理想,并可實(shí)現(xiàn)并行性,將遺傳算法的優(yōu)點(diǎn)發(fā)揮到極致。
   醫(yī)學(xué)圖像分類(lèi)對(duì)實(shí)現(xiàn)智能化診斷系統(tǒng)有著重要的實(shí)際意義,是典型的分類(lèi)挖掘問(wèn)題之一,同時(shí)也是一個(gè)熱點(diǎn)的應(yīng)用研究課題。為了建立高效的腫瘤自動(dòng)診斷系統(tǒng),克服因醫(yī)學(xué)MIR圖像的復(fù)雜性帶來(lái)的直接從圖像中看出腫瘤及良、惡性質(zhì)的困難,結(jié)合復(fù)雜網(wǎng)絡(luò)的部分理論成果和K-means聚類(lèi)算法的思想,提出了基于加權(quán)復(fù)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論