2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩60頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、近十年來,深度學(xué)習(xí)作為一種強(qiáng)有力的目標(biāo)表征結(jié)構(gòu),在特征提取、數(shù)據(jù)分析、圖像處理和自然語言理解等領(lǐng)域取得了較以往淺層表征更優(yōu)越的結(jié)果。深度學(xué)習(xí)的訓(xùn)練算法解決了多隱層感知器模型的最優(yōu)化問題,其擁有更加強(qiáng)大的數(shù)據(jù)特征表達(dá)能力。其中,具有局部感知和共享權(quán)值等特點(diǎn)的卷積神經(jīng)網(wǎng)絡(luò)在圖像局部特征理解和網(wǎng)絡(luò)訓(xùn)練時(shí)間上更具優(yōu)勢(shì)。圖像大數(shù)據(jù)應(yīng)用的蓬勃發(fā)展也使得以卷積神經(jīng)網(wǎng)絡(luò)為代表的深度網(wǎng)絡(luò)在千萬級(jí)的圖像分類任務(wù)中發(fā)揮了及其重要的應(yīng)用價(jià)值。
  本文在

2、深入研究了主流深度學(xué)習(xí)算法的原理和網(wǎng)絡(luò)結(jié)構(gòu)的基礎(chǔ)上,總結(jié)和介紹了深度卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)特點(diǎn)和訓(xùn)練流程,并將卷積神經(jīng)網(wǎng)絡(luò)運(yùn)用到實(shí)際圖像識(shí)別任務(wù)中。此外,考慮到實(shí)際分類任務(wù)場景復(fù)雜性,本文結(jié)合協(xié)同訓(xùn)練算法和卷積神經(jīng)網(wǎng)絡(luò),構(gòu)建了一種能持續(xù)自動(dòng)學(xué)習(xí)新特征的通用圖像目標(biāo)分類方法。主要工作如下:
  1)在理解傳統(tǒng)BP神經(jīng)網(wǎng)絡(luò)算法原理的基礎(chǔ)上,深入研究了卷積神經(jīng)網(wǎng)絡(luò)的結(jié)構(gòu)特點(diǎn),并介紹了卷積神經(jīng)網(wǎng)絡(luò)使用梯度下降法的訓(xùn)練流程。
  2)將卷

3、積神經(jīng)網(wǎng)絡(luò)應(yīng)用于手寫體圖像識(shí)別實(shí)驗(yàn)中,通過實(shí)驗(yàn)進(jìn)一步直觀驗(yàn)證了卷積神經(jīng)網(wǎng)絡(luò)對(duì)圖像數(shù)據(jù)優(yōu)越的表征能力,并觀察不同的網(wǎng)絡(luò)參數(shù)對(duì)卷積神經(jīng)網(wǎng)絡(luò)分類效果的影響。
  3)結(jié)合協(xié)同訓(xùn)練算法和卷積神經(jīng)網(wǎng)絡(luò),構(gòu)建了一種能夠自動(dòng)學(xué)習(xí)新特征的通用目標(biāo)分類網(wǎng)絡(luò);通過標(biāo)記置信度的約束和去噪訓(xùn)練算法的優(yōu)化,提高了深度協(xié)同訓(xùn)練網(wǎng)絡(luò)的魯棒性。
  4)將深度協(xié)同訓(xùn)練網(wǎng)絡(luò)應(yīng)用于基于圖像的性別識(shí)別和人車分類實(shí)驗(yàn)中,通過與傳統(tǒng)協(xié)同訓(xùn)練算法分類效果的對(duì)比,總結(jié)了

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論