版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、學(xué)校代號(hào):10731學(xué)密號(hào):112085210006級(jí):公開蘭州理工大學(xué)全日制工程碩士學(xué)位論文基于改進(jìn)TANC的機(jī)器學(xué)習(xí)文本分類方法研究筌避委員金圭廑;重童塹直王蘭州理工大學(xué)學(xué)位論文原創(chuàng)性聲明本人鄭重聲明:所呈交的論文是本人在導(dǎo)師的指導(dǎo)下獨(dú)立進(jìn)行研究所取得的研究成果。除了文中特別加以標(biāo)注引用的內(nèi)容外,本論文不包含任何其他個(gè)人或集體己經(jīng)發(fā)表或撰寫的成果作品。對(duì)本文的研究做出重要貢獻(xiàn)的個(gè)人和集體,均已在文中以明確方式標(biāo)明。本人完全意識(shí)到本聲
2、明的法律后果由本人承擔(dān)。作者簽名:巾撇日期:Ⅶl午年石月乙El學(xué)位論文版權(quán)使用授權(quán)書本學(xué)位論文作者完全了解學(xué)校有關(guān)保留、使用學(xué)位論文的規(guī)定,同意學(xué)校保留并向國(guó)家有關(guān)部門或機(jī)構(gòu)送交論文的復(fù)印件和電子版,允許論文被查閱和借閱。本人授權(quán)蘭州理工大學(xué)可以將本學(xué)位論文的全部或部分內(nèi)容編入有關(guān)數(shù)據(jù)庫(kù)進(jìn)行檢索,可以采用影印、縮印或掃描等復(fù)制手段保存和匯編本學(xué)位論文。本學(xué)位論文屬于1、保密口,在年解密后適用本授權(quán)書。2、不保密曰。(請(qǐng)?jiān)谝陨舷鄳?yīng)方框內(nèi)打
溫馨提示
- 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 基于實(shí)例與特征的遷移學(xué)習(xí)文本分類方法研究.pdf
- 基于半監(jiān)督的SVM遷移學(xué)習(xí)文本分類方法.pdf
- 基于機(jī)器學(xué)習(xí)的中文文本分類方法研究
- 基于機(jī)器學(xué)習(xí)的文本分類研究.pdf
- 基于TrAdaBoost的直推式遷移學(xué)習(xí)文本分類技術(shù)改進(jìn)研究.pdf
- 基于機(jī)器學(xué)習(xí)的中文文本分類方法研究.pdf
- 基于機(jī)器學(xué)習(xí)的自動(dòng)文本分類研究.pdf
- 基于機(jī)器學(xué)習(xí)的文本分類算法研究.pdf
- 基于機(jī)器學(xué)習(xí)算法的文本分類系統(tǒng).pdf
- 基于機(jī)器學(xué)習(xí)的大規(guī)模文本分類.pdf
- 基于改進(jìn)詞語(yǔ)權(quán)重的文本分類方法研究.pdf
- 基于機(jī)器學(xué)習(xí)的漢語(yǔ)短文本分類方法研究與實(shí)現(xiàn).pdf
- 基于改進(jìn)TFIDF的混合模型文本分類方法研究.pdf
- 基于流形學(xué)習(xí)的文本分類方法研究.pdf
- 基于機(jī)器學(xué)習(xí)的文本分類算法研究與應(yīng)用.pdf
- 基于機(jī)器學(xué)習(xí)的中文文本分類算法研究.pdf
- 基于機(jī)器學(xué)習(xí)的文本分類器系統(tǒng)設(shè)計(jì).pdf
- 基于信任機(jī)器的文本分類研究.pdf
- 基于改進(jìn)哈希算法的快速KNN文本分類方法.pdf
- 基于深度學(xué)習(xí)的文本分類研究.pdf
評(píng)論
0/150
提交評(píng)論