版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、中文 中文 5518 5518 字出處: 出處:Journal of Materials Processing Technology 142 (2003) 20–28翻譯原文 翻譯原文Delta ferrite prediction in stainless steel welds using neural network analysis and comparison with other prediction methodsM. V
2、asudevan a,?, A.K. Bhaduri a, Baldev Raj a, K. Prasad Raoba Metallurgy and Materials Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Indiab Department of Metallurgy, Indian Institute of Technology, Chennai, I
3、ndiaReceived 2 May 2002; received in revised form 11 December 2002; accepted 17 February 2003AbstractThe ability to predict the delta ferrite content in stainless steel welds is important for many reasons. Depending on t
4、he service requirement,manufacturers and consumers often specify delta ferrite content as an alloy specification to ensure that weld contains a desired minimum or maximum ferrite level. Recent research activities have be
5、en focused on studying the effect of various alloying elements on the delta ferrite content and controlling delta ferrite content by modifying the weld metal compositions. Over the years, a number of methods including co
6、nstitution diagrams, Function Fit model, Feed-forward Back-propagation neural network model have been put forward for predicting the delta ferrite content in stainless steel welds. Among all the methods, neural network m
7、ethod was reported to be more accurate compared to other methods. A potential risk associated with neural network analysis is over-fitting of the training data. To avoid over-fitting, Mackay has developed a Bayesian fram
8、ework to control the complexity of the neural network. Main advantages of this method are that it provides meaningful error-bars for the model predictions and also it is possible to identify automatically the input varia
9、bles which are important in the content. Hence, the delta ferrite content estimated using the WRC-1992 diagram would always be less accurate and may never be close to the actual measured value. In the Function Fit model
10、[7] for estimating ferrite, the difference in free energy between the ferrite and the austenite was calculated as a function of composition and this was related to ferrite number (FN). The equation used in this model to
11、determine FN is given below:FN = A[1 + exp(B + C_G)]?1 (1)where A, B and C are the constants. The advantages of this semi-empirical model over the WRC-1992 diagram include its considering effect of other alloying element
12、s and the ease of extrapolation to higher Creq and Nieq values. This Function Fit method can be used for a wide range of weld metal compositions and owing to the analytical form of this model, the FN can be quantified ea
13、sily. However, the accuracy of this method is not greater than the WRC-1992 diagram. Vitek et al. [8,9] sought to overcome the major limitation of the constitution diagram and the Function Fit method of not taking into a
14、ccount the elemental interactions, by using neural networks for predicting ferrite in SS welds.The improvement in accuracy in predicting the delta ferrite content by using neural networks, involving a feed-forward networ
15、k with a back-propagation optimization scheme, has been clearly brought in their study. The effect of various elements on the delta ferrite content for a few base compositions was examined by calculating the FN as a func
16、tion of composition. However, it was not possible in their analysis to directly interpret the elemental contributions to the final FN. The prediction and measurement of ferrite in SS welds remains of scientific interest
17、due to limitations in all the current methods, and newer methods and constitution diagrams are continuously being proposed to predict the delta ferrite content for a wider range of SS types. It was in this context that t
18、he development of a more accurate neural network based predictive tool for estimating the effect of various alloying elements on the delta ferrite content for different SS welds was taken up in this work.A potential risk
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 金屬材料專業(yè)外文翻譯--利用神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)與其他預(yù)測(cè)方法對(duì)δ鐵素體不銹焊縫的分析和比較
- 金屬材料專業(yè)外文翻譯--利用神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)與其他預(yù)測(cè)方法對(duì)δ鐵素體不銹焊縫的分析和比較
- 金屬材料專業(yè)外文翻譯--利用神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)與其他預(yù)測(cè)方法對(duì)δ鐵素體不銹焊縫的分析和比較.docx
- 金屬材料專業(yè)外文翻譯--利用神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)與其他預(yù)測(cè)方法對(duì)δ鐵素體不銹焊縫的分析和比較.docx
- 金屬材料專業(yè)外文翻譯--利用神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)與其他預(yù)測(cè)方法對(duì)δ鐵素體不銹焊縫的分析和比較(英文)
- 金屬材料專業(yè)外文翻譯2
- 股價(jià)預(yù)測(cè)的非線性方法研究——神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)方法.pdf
- 基于小波分析和神經(jīng)網(wǎng)絡(luò)的股價(jià)預(yù)測(cè)方法研究.pdf
- 基于神經(jīng)網(wǎng)絡(luò)的股票預(yù)測(cè)分析和研究.pdf
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用
- 外文翻譯---人工神經(jīng)網(wǎng)絡(luò)在短期負(fù)荷預(yù)測(cè)中的應(yīng)用
- 神經(jīng)網(wǎng)絡(luò)對(duì)股市預(yù)測(cè)的研究應(yīng)用
- 龍門式起重機(jī)金屬材料的疲勞強(qiáng)度預(yù)測(cè)外文翻譯
- 基于神經(jīng)網(wǎng)絡(luò)的拼焊板焊縫移動(dòng)預(yù)測(cè)研究.pdf
- 龍門式起重機(jī)金屬材料的疲勞強(qiáng)度預(yù)測(cè)外文翻譯
- 外文翻譯-伊朗國(guó)家電網(wǎng)利用人工神經(jīng)網(wǎng)絡(luò)的短期負(fù)荷預(yù)測(cè)
- 龍門式起重機(jī)金屬材料的疲勞強(qiáng)度預(yù)測(cè)外文翻譯
- 基于灰色預(yù)測(cè)和人工神經(jīng)網(wǎng)絡(luò)組合的負(fù)荷預(yù)測(cè).pdf
- 空調(diào)負(fù)荷神經(jīng)網(wǎng)絡(luò)預(yù)測(cè)方法的研究.pdf
評(píng)論
0/150
提交評(píng)論