復(fù)雜非線性系統(tǒng)的智能故障診斷與容錯(cuò)控制_第1頁(yè)
已閱讀1頁(yè),還剩120頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、南京航空航天大學(xué)博士學(xué)位論文 V摘 要 論文針對(duì)具有多變量、時(shí)滯、不確定性或模型未知的復(fù)雜非線性系統(tǒng),將狀態(tài)觀測(cè)器理論、魯棒控制控制理論、自適應(yīng)控制理論與先進(jìn)的智能技術(shù)包括神經(jīng)網(wǎng)絡(luò)和 Takagi-Sugeno(T-S)模糊模型有機(jī)結(jié)合,研究了系統(tǒng)狀態(tài)不可測(cè)時(shí)的故障診斷和主動(dòng)容錯(cuò)控制。 首先,給出了非線性系統(tǒng)能觀的有關(guān)概念,針對(duì)部分模型已知的非線性系統(tǒng),當(dāng)系統(tǒng)相對(duì)階為 n(n 為系統(tǒng)的階數(shù))時(shí),提出了一種觀測(cè)器設(shè)計(jì)方案,利用非線性

2、變換,將含有建模誤差的非線性系統(tǒng)變換為僅依賴原系統(tǒng)的輸入、輸出的規(guī)范形式,從而可利用可測(cè)數(shù)據(jù)構(gòu)造觀測(cè)器。當(dāng)系統(tǒng)的相對(duì)階小于 n 但為最小相位系統(tǒng)時(shí),用 RBF 神經(jīng)網(wǎng)絡(luò)逼近系統(tǒng)的不確定性,解決了具有不確定性非線性系統(tǒng)的觀測(cè)器設(shè)計(jì)問題。 在解決了狀態(tài)觀測(cè)器設(shè)計(jì)問題之后,針對(duì)一類含有部分模型已知的非線性系統(tǒng),利用非線性變換的方法研究狀態(tài)不可測(cè)時(shí)的故障診斷問題。RBF 神經(jīng)網(wǎng)絡(luò)作為故障估計(jì)器,其輸入為系統(tǒng)的估計(jì)狀態(tài),輸出為估計(jì)的故障,既可用作

3、構(gòu)造容錯(cuò)控制律也可用作報(bào)警。 針對(duì)一類模型未知非線性系統(tǒng),提出了基于自適應(yīng)神經(jīng)網(wǎng)絡(luò)的故障診斷策略,用一個(gè) RBF 神經(jīng)網(wǎng)絡(luò)構(gòu)造狀態(tài)估計(jì)器,用另一個(gè)權(quán)值和中心可以在線調(diào)整的 RBF 神經(jīng)網(wǎng)絡(luò)構(gòu)造故障估計(jì)器,解決了模型未知且系統(tǒng)狀態(tài)不可測(cè)時(shí)的故障診斷問題。 本文與常規(guī)的應(yīng)用 LMI(Linear Matrix Inequality)研究時(shí)滯系統(tǒng)的方法不同,針對(duì)一類狀態(tài)不可測(cè)且模型未知的非線性時(shí)滯系統(tǒng),提出了基于神經(jīng)網(wǎng)絡(luò)的故障診斷新方法。直接

4、估計(jì)系統(tǒng)的狀態(tài)及時(shí)滯狀態(tài),然后作為神經(jīng)網(wǎng)絡(luò)的輸入對(duì)故障進(jìn)行估計(jì),并對(duì)系統(tǒng)的穩(wěn)定性進(jìn)行了論證。仿真結(jié)果表明該方法簡(jiǎn)單有效。 非仿射非線性系統(tǒng)的研究比一般的仿射非線性系統(tǒng)更復(fù)雜。 針對(duì)一類非仿射非線性系統(tǒng),研究了基于狀態(tài)觀測(cè)器的魯棒自適應(yīng) H∞ 跟蹤控制問題。RBF 神經(jīng)網(wǎng)絡(luò)用來在線抵消非線性模型誤差, 高增益觀測(cè)器用來估計(jì)不能直接測(cè)量的輸出導(dǎo)數(shù)。 在系統(tǒng)沒有擾動(dòng)時(shí), 確保跟蹤誤差漸近趨于零且系統(tǒng)的所有信號(hào)有界; 當(dāng)擾動(dòng)存在時(shí),能取得預(yù)期的

5、 H∞ 跟蹤性能。由于磁懸浮系統(tǒng)的非線性模型為非仿射非線性系統(tǒng),本文方法針對(duì)磁懸浮系統(tǒng)進(jìn)行了大量的仿真研究。 南京航空航天大學(xué)博士學(xué)位論文 VIIAbstract The intelligent fault diagnosis and active tolerant control for a class of complex uncertain nonlinear dynamic systems or model-unkown ti

6、me delay systems with unmeasured states are studied in this dissertation. Based on the states observer design theory, robust control theory , adaptive control theory and combined with advanced intelligent techniques i

7、ncluding the neural network and T-S fuzzy model, a set of fault diagnosis and reconfigurable control methods are proposed.The main contents of the dissertation are as follows: At first, the observability definitions f

8、or the nonlinear system are given. A state observer design method for a class of uncertain nonlinear systems whose reletive degree equals the system order n is addresed.The system is transformed diffeomorphically into

9、 a canonical system with the modelling error only depending on the measurable input and output data. When the systems reletive degree is less its orders, a new observer structure is introduced, and a neural network i

10、s applied to approximate the uncertainty . The observer guarantees that the state estimate error converges to zero provided that system zero dynamics is asymptotically stable. Based on estimated states, a fault diagno

11、sis architecture for a class of uncertan nonlinear syetems is proposed, a diffeomorphism is applied to transform the nonlinear system into a new coordinate system . The estimated states are input to the fault approxi

12、mator whose outputs are estimated fault model.When a system model is unknown and the states are unavailable for measurement, the states are estimated on-line by employing a general RBF neural network, while the fault o

13、f system is estimated by an adaptive RBF neural network where center and width vectors of Gaussian function are on-line updated. Further the fault diagnosis scheme for a class of nonlinear time-delay systems with unme

14、asured states is studied. Unlike the usual method which is within framework of Linear Matrix Inequalities techniques(LMI) , in this paper,the estimated states and time-delay states are used the input to the neural net

15、works in order to approximate the fault model.The stability of the error system are analyzed using Lyapunov stability theory. A robust adaptive tracking control architecture with state observer is proposed for a class

16、 of nonaffine nonlinear systems. A high-gain observer is used to estimate the derivatives of system output, a RBF neural network is used to cancel nonlinear uncertainties. Applying estimate states , the track controll

17、er is designed , the fixed control law and adaptive law are derived. It is shown that the tracking error is guaranteed to be asymptotically convergent with the aid of an additional robustifying control term when there

18、 not exists externel disturbance, and a tracking perfomance is achieved with a externel disturbance. A magnetic levitated ball system is used as a simulation example. Furthemore, the active fault-tolerant control te

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論