數(shù)據(jù)倉(cāng)庫(kù)和數(shù)據(jù)挖掘題庫(kù)_第1頁(yè)
已閱讀1頁(yè),還剩11頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶(hù)提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、一、填空題(210=20分)1、數(shù)據(jù)倉(cāng)庫(kù)就是一個(gè)面向主題的、集成的、相對(duì)穩(wěn)定的、反映歷史變化的數(shù)據(jù)集合。2、元數(shù)據(jù)是描述數(shù)據(jù)倉(cāng)庫(kù)內(nèi)數(shù)據(jù)的結(jié)構(gòu)和建立方法的數(shù)據(jù),它為訪問(wèn)數(shù)據(jù)倉(cāng)庫(kù)提供了一個(gè)信息目錄,根據(jù)數(shù)據(jù)用途的不同可將數(shù)據(jù)倉(cāng)庫(kù)的元數(shù)據(jù)分為技術(shù)元數(shù)據(jù)和業(yè)務(wù)元數(shù)據(jù)兩類(lèi)。3、數(shù)據(jù)處理通常分成兩大類(lèi):聯(lián)機(jī)事務(wù)處理和聯(lián)機(jī)分析處理。4、ROLAP是基于關(guān)系數(shù)據(jù)庫(kù)的OLAP實(shí)現(xiàn),而MOLAP是基于多維數(shù)據(jù)結(jié)構(gòu)組織的OLAP實(shí)現(xiàn)。5、調(diào)和數(shù)據(jù)是存儲(chǔ)在企業(yè)

2、級(jí)數(shù)據(jù)倉(cāng)庫(kù)和操作型數(shù)據(jù)存儲(chǔ)中的數(shù)據(jù)。6、數(shù)據(jù)抽取的兩個(gè)常見(jiàn)類(lèi)型是靜態(tài)抽取和增量抽取。靜態(tài)抽取用于最初填充數(shù)據(jù)倉(cāng)庫(kù),增量抽取用于進(jìn)行數(shù)據(jù)倉(cāng)庫(kù)的維護(hù)。7、維度表一般由主鍵、分類(lèi)層次和描述屬性組成。對(duì)于主鍵可以選擇兩種方式:一種是采用自然鍵,另一種是采用代理鍵。7、雪花型模式是對(duì)星型模式維表的進(jìn)一步層次化和規(guī)范化來(lái)消除冗余的數(shù)據(jù)。8、數(shù)據(jù)倉(cāng)庫(kù)中存在不同綜合級(jí)別的數(shù)據(jù)。一般把數(shù)據(jù)分成4個(gè)級(jí)別:早期細(xì)節(jié)級(jí)、當(dāng)前細(xì)節(jié)級(jí)、輕度綜合級(jí)和高度綜合級(jí)。9、

3、數(shù)據(jù)倉(cāng)庫(kù)的概念模型通常采用信息包圖法來(lái)進(jìn)行設(shè)計(jì),要求將其5個(gè)組成部分(包括名稱(chēng)、維度、類(lèi)別、層次和度量)全面地描述出來(lái)。10、確定了數(shù)據(jù)倉(cāng)庫(kù)的粒度模型以后,為提高數(shù)據(jù)倉(cāng)庫(kù)的使用性能,還需要根據(jù)用戶(hù)需求設(shè)計(jì)聚合模型。11、粒度是對(duì)數(shù)據(jù)倉(cāng)庫(kù)中數(shù)據(jù)的綜合程度高低的一個(gè)衡量。粒度越小,細(xì)節(jié)程度越高,綜合程度越低,回答查詢(xún)的種類(lèi)越多。12、數(shù)據(jù)倉(cāng)庫(kù)的數(shù)據(jù)量通常較大,且數(shù)據(jù)一般很少更新,可以通過(guò)設(shè)計(jì)和優(yōu)化索引結(jié)構(gòu)來(lái)提高數(shù)據(jù)存取性能。13、聚類(lèi)分析包

4、括連續(xù)型、二值離散型、多值離散型和混合類(lèi)型4種類(lèi)型描述屬性的相似度計(jì)算方法。14、OLAP的實(shí)現(xiàn)方式有以下兩種:基于關(guān)系數(shù)據(jù)庫(kù)系統(tǒng)的實(shí)現(xiàn)和基于多維數(shù)據(jù)6.6.決策樹(shù):決策樹(shù):是用樣本的屬性作為結(jié)點(diǎn),用屬性的取值作為分支的樹(shù)結(jié)構(gòu)。它是分類(lèi)規(guī)則挖掘的典型方法,可用于對(duì)新樣本進(jìn)行分類(lèi)。7.7.數(shù)據(jù)挖掘:數(shù)據(jù)挖掘:從大量的、不完全的、有噪聲的、模糊的、隨機(jī)的數(shù)據(jù)中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識(shí)的過(guò)程。8.8.數(shù)

5、據(jù)歸約:數(shù)據(jù)歸約:縮小數(shù)據(jù)的取值范圍,使其更適合于數(shù)據(jù)挖掘算法的需要,并且能夠得到和原始數(shù)據(jù)相同的分析結(jié)果。9.9.遺傳算法遺傳算法:是一種優(yōu)化搜索算法,它首先產(chǎn)生一個(gè)初始可行解群體,然后對(duì)這個(gè)群體通過(guò)模擬生物進(jìn)化的選擇、交叉、變異等遺傳操作遺傳到下一代群體,并最終達(dá)到全局最優(yōu)。10.10.聚類(lèi):聚類(lèi):是將物理或抽象對(duì)象的集合分組成為多個(gè)類(lèi)或簇(cluster)的過(guò)程,使得在同一個(gè)簇中的對(duì)象之間具有較高的相似度,而不同簇中的對(duì)象差別較大

6、。11.11.關(guān)聯(lián)規(guī)則:關(guān)聯(lián)規(guī)則:同時(shí)滿(mǎn)足最小支持度閾值和最小可信度閾值的規(guī)則稱(chēng)之為關(guān)聯(lián)規(guī)則。三、簡(jiǎn)答題1.何謂數(shù)據(jù)挖掘?它有哪些方面的功能?從大量的、不完全的、有噪聲的、模糊的、隨機(jī)的數(shù)據(jù)中,提取隱含在其中的、人們事先不知道的、但又是潛在有用的信息和知識(shí)的過(guò)程稱(chēng)為數(shù)據(jù)挖掘。相關(guān)的名稱(chēng)有知識(shí)發(fā)現(xiàn)、數(shù)據(jù)分析、數(shù)據(jù)融合、決策支持等。數(shù)據(jù)挖掘的功能包括:概念描述、關(guān)聯(lián)分析、分類(lèi)與預(yù)測(cè)、聚類(lèi)分析、趨勢(shì)分析、孤立點(diǎn)分析以及偏差分析等。2.何謂數(shù)據(jù)

7、倉(cāng)庫(kù)?為什么要建立數(shù)據(jù)倉(cāng)庫(kù)?數(shù)據(jù)倉(cāng)庫(kù)是一種新的數(shù)據(jù)處理體系結(jié)構(gòu),是面向主題的、集成的、不可更新的(穩(wěn)定性)、隨時(shí)間不斷變化(不同時(shí)間)的數(shù)據(jù)集合,為企業(yè)決策支持系統(tǒng)提供所需的集成信息。建立數(shù)據(jù)倉(cāng)庫(kù)的目的有3個(gè):一是為了解決企業(yè)決策分析中的系統(tǒng)響應(yīng)問(wèn)題,數(shù)據(jù)倉(cāng)庫(kù)能提供比傳統(tǒng)事務(wù)數(shù)據(jù)庫(kù)更快的大規(guī)模決策分析的響應(yīng)速度。二是解決決策分析對(duì)數(shù)據(jù)的特殊需求問(wèn)題。決策分析需要全面的、正確的集成數(shù)據(jù),這是傳統(tǒng)事務(wù)數(shù)據(jù)庫(kù)不能直接提供的。三是解決決策分析對(duì)

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶(hù)所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶(hù)上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶(hù)上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶(hù)因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論