哈工大航天學院課程-空間飛行器動力學與控制-第5課-空間飛行器軌道動力學下_第1頁
已閱讀1頁,還剩42頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領

文檔簡介

1、一、衛(wèi)星軌道設計二、飛行器軌道攝動,第五課 空間飛行器軌道動力學(下),軌道設計的主要依據(jù)是衛(wèi)星的飛行使命,如對地觀測、通信、導航、科學試驗等。設計內(nèi)容包括軌道要素、選擇發(fā)射時間等。下面介紹幾種常用軌道。,一、衛(wèi)星軌道設計,地球同步軌道 定義:在地球赤道面內(nèi),衛(wèi)星運行角速度與地球自轉角速度一樣的軌道。 地面上看衛(wèi)星相對地球是靜止不動,又叫做“靜止”軌道。,地球同步軌道要素:?軌道偏心率e=0,?軌

2、道傾角i=0?軌道周期T=23小時56分04秒?軌道半徑a=42255km,?軌道運行速度v=3.14km/s 為什么不用定義升交點赤經(jīng)、近地點角距和真近點角?,靜止衛(wèi)星軌道發(fā)射實例: 靜止衛(wèi)星的發(fā)射比一般衛(wèi)星復雜,現(xiàn)以通信技術衛(wèi)星(CTS)為例敘述發(fā)射過程。 這顆衛(wèi)星于1976年1月17日世界時23時28分美國西靶場發(fā)射,運載火箭是德爾它2914型火箭。

3、 西靶場位于佛羅里達洲的卡納維拉爾角,北緯28°28′。衛(wèi)星定點位置是西經(jīng)114°赤道面上,如圖5.1所示。,圖5.1 靜止衛(wèi)星由地面起飛進入轉移軌道F—地心;P—轉移軌道近地點;R—地球半徑;AP—轉移軌道遠地點,運載火箭先將衛(wèi)星送入185km高的圓形軌道,即“停泊軌道”。 衛(wèi)星在停泊軌道上滑行15min將到達赤道上空。 在到達赤道前,第三級重新點火,對衛(wèi)星加速,而火

4、箭熄火點選在赤道面上,使衛(wèi)星進入近地點在赤道的橢圓形的過渡軌道(亦稱轉移軌道)。,過渡軌道的遠地點也落在赤道面上,其遠地點高度略高于同步軌道高度。 衛(wèi)星在過渡軌道上運行6.5圈(大約3d),對軌道和姿態(tài)進行精確測定,為下一步調整姿態(tài)與改變軌道作準備。,衛(wèi)星將在過渡軌道遠地點改變軌道進入準地球同步軌道,把這個變軌發(fā)動機通常稱為“遠地點發(fā)動機”,它安裝在星體縱軸上。,當衛(wèi)星在近地點進入過渡軌道時,發(fā)動機噴管是背向運行方向的。

5、由于衛(wèi)星在過渡軌道上以大約60r/min轉的速度自旋,因此,衛(wèi)星縱軸在慣性空間保持定向,而在遠地點的運行方向與近地點相反。為使發(fā)動機提供的速度增量能將衛(wèi)星送入準地球同步軌道,應使速度增量與過渡軌道遠地點速度的矢量合成速度在赤道面內(nèi),并且與衛(wèi)星向徑垂直,使衛(wèi)星沿赤道周向運行。,合成速度的量值近似為同步速度值。為此,在遠地點發(fā)動機點火箭應對衛(wèi)星縱軸重新定向。CTS是利用星上兩個較大的助推器將縱軸在當?shù)厮矫鎯?nèi)改變255°,以建立點

6、火姿態(tài)。,遠地點發(fā)動機熄火后衛(wèi)星進入周期為23小時15分鐘的準同步軌道。由于這個周期值比一恒星日小,衛(wèi)星運轉得比地球自轉快,因此,衛(wèi)星相對地面緩慢地朝東移動,進入預定的定點位置。,衛(wèi)星在飄移過程中還需進行一系列的軌道修正,使衛(wèi)星在進入定點位置時的軌道周期近似為一恒星日。此后,利用星上位置保持系統(tǒng),對衛(wèi)星進行位置保持。同時,衛(wèi)星縱軸轉為垂直于赤道面,姿態(tài)控制方式也由自旋穩(wěn)定轉換為對地定向三軸穩(wěn)定,綜上所述,由于地球同步軌道高、傾角為零,發(fā)

7、射場不在赤道上,而衛(wèi)星又有定點要求,因此發(fā)射靜止衛(wèi)星通常要經(jīng)歷停泊軌道、過渡軌道(亦稱轉移軌道)、準同步軌道與同步軌道等幾個階段。簡要概括如下 確定停泊軌道、轉移軌道、地球同步運行軌道參數(shù) 進入近地的停泊軌道,調整參數(shù) 發(fā)動機點火從停泊軌道進入轉移軌道 發(fā)動機再次點火從轉移軌道進入同步軌道,太陽同步軌道 太陽同步軌道是指軌道面的進動與平太陽的周年視運動同步的衛(wèi)星軌道。地球扁率引起升交點赤經(jīng)的長期變化,變化

8、率主要依賴于軌道傾角 ,也與半長軸 、偏心率 有關。對確定的 、 ,選擇 使 等于平太陽的周年視運動,即 ,就是太陽同步軌道。,循環(huán)軌道與回歸軌道 如果星上軌道維持系統(tǒng)保證衛(wèi)星軌道周期是常量的條件下,衛(wèi)星每運行一定圈數(shù)后,星下點軌跡便重疊起來,則這類軌道稱為“循環(huán)軌道”。 顯然,循環(huán)軌道的星下點軌跡是一條固定在地球表面的閉合曲線。假設星下點軌

9、跡的升段(或降段)將所經(jīng)過的緯圈等間距地分為N 段,即在全球經(jīng)度范圍內(nèi)共 N個間隙,則 N即為星下點軌跡重疊循環(huán)的最少運行圈數(shù)。稱N為“循環(huán)圈數(shù)”。,,衛(wèi)星運行一圈后,星下點在同一緯圈上的西移度數(shù)記為 , 這兩個星下點之間的間隙數(shù)記為 。不難看出下式為: (5.1) 這就是循環(huán)軌道的基本條件。若亦為太陽同步軌道, 為運行 圈的整天數(shù)。

10、 的循環(huán)軌道特稱“回歸軌道”。令 可以得到三條常用的回歸軌道的平均高度(即圓軌道高度)依次為282km,574km,901km。,覆蓋軌道 某些對地觀測衛(wèi)星的遙感器視場在地面上的覆蓋面,隨衛(wèi)星運行形成以星下點軌跡為中線的帶形區(qū),稱為“觀測帶”。靜止衛(wèi)星的覆蓋面不變,如圖5.2所示。,圖5.2 靜止衛(wèi)星的覆蓋面,衛(wèi)星運行一定圈數(shù)后,觀測帶在規(guī)定的緯度范圍

11、的,按確定的旁向重疊率要求毗連成片,構成觀測區(qū)。這種軌道便是常見的“覆蓋軌道”。 在同一軌道上,緯度越高,重疊率也越大。完成一次覆蓋所需要的圈數(shù)稱為“覆蓋圈數(shù)”,相應的天數(shù)稱為“覆蓋周期”。,衛(wèi)星網(wǎng) 衛(wèi)星網(wǎng)是由多顆衛(wèi)星按一定的軌道配置組成的衛(wèi)星系統(tǒng),主要為地面用戶或近地空間用戶進行衛(wèi)星通信、導航或定位等任務。 除了靜止衛(wèi)星通信網(wǎng)是在同一軌道平面上外(圖5.3), 衛(wèi)星網(wǎng)通常含有幾個軌道平面

12、。這些軌道平面具有相同的軌道傾角,但升交點赤經(jīng)不同,相鄰軌道升交點保持等間距。每個軌道上配置等間距的多顆衛(wèi)星。,為此,衛(wèi)星軌道為圓或近圓形,軌道高度相同。此外,為了使軌道升交點赤經(jīng)變化率相同,保待軌道面等間距,也需要衛(wèi)星軌道具有相同的傾角與高度。,圖5.3 靜止衛(wèi)星全球通信網(wǎng),圖5.4表示美國全球定位系統(tǒng)衛(wèi)星網(wǎng)的軌道配置。該衛(wèi)星網(wǎng)共有24顆衛(wèi)星,配置在3個軌道上。圖5.4 全球定位系統(tǒng)的軌道配置,在二體運動的軌道分析

13、中,假定衛(wèi)星僅受到地球引力的作用,可以得到衛(wèi)星的軌道是一個不變的橢圓,軌道要素是常數(shù)的結論。 但事實上衛(wèi)星除受地球引力外,還有其他外力作用于衛(wèi)星,如地球非球形攝動,大氣阻力攝動,日月引力攝動,太陽輻射壓力攝動,小推力攝動等力學因素的影響。 衛(wèi)星的實際運動軌跡必然偏離二體運動的橢圓軌道,這種偏離稱為“軌道攝動”。因此,為了軌道的保持,必須研究軌道的攝動因素。,二、飛行器軌道攝動,攝動運動的基本原理回顧:

14、 航天器在無攝動(即二體問題)時的運動方程為,有:,積分,,再次積分,,式中 ,對于繞地球運動航天器,上述解描述了一個橢圓運動,6個積分常數(shù) 表示軌道根數(shù)。,航天器的攝動運動方程可寫為,,(5.4),式中, 為攝動加速度。攝動運動方程中由于多了攝動項 ,如果仍然用 表示方程的解,顯然

15、 就不再是常數(shù),而應為時間t的函數(shù)。 對t求導數(shù)有,(5.5),由于 應滿足受攝運動方程,應有,此式再對t求一次導數(shù),并讓其滿足攝動方程,即,,(5.7),由此可知,在常數(shù)變易時的兩個條件應為,式中, 和 都是 和 的已知函數(shù),因此共有六個未知量為 ,未知量與方程個數(shù)相同。,利用上述方程計算航天器軌道時,要根據(jù)航天器軌道、本

16、體參數(shù)、計算精度要求等因素選取運動方程右端項,并選擇合適的計算方法。,這里的處理方法就是把受攝運動視為一個變化的橢圓運動,而無攝運動中的橢圓關系式即 的表達式依然成立,只是相應的六個不變根數(shù) 變?yōu)?,稱為瞬時根數(shù)或密切根數(shù)。,軌道要素的攝動方程 分析攝動力引起衛(wèi)星軌道要素的變化,用軌道要素表示衛(wèi)星的攝動方程,在天體力學中是著名的拉格朗日行星運動方程。 設

17、 , , 分別為攝動力的徑向、橫向、法向三個分量。直接給出六個軌道要素的攝動方程如下:,,(5.8),,,主要的軌道攝動擾動源及其攝動加速度 (1)地球引力與非球形攝動 假定地球為一個剛體,其引力勢函數(shù) 的展開式在地心坐標系中可寫成下列形式 (5.9)式中, ,,,,,,,,,,,,,其中, ——地

18、心距 ——地理經(jīng)度 ——地心緯度 ——地球赤道半徑 ——勒讓德多項式; ——地球引力勢的主要部分(也稱為中心引力勢),相當于地球為球形、密度分布均勻的球體的引力勢 ——非球形引力勢于均勻球體引力勢的修正項(也稱為引力攝動勢) , ——由測量得到的系數(shù)。,因此,航天器在地球引力場中運動時,其

19、運動方程可寫成 (5.10)式中, , 運動方程(5.10)中的主要部分對應二體問題,即 。這是可以求得解析解的,而 相對 是一個小擾動,稱為攝動部分。由地球非球形引起的攝動也稱為地球形狀攝動。,(2)大氣阻力攝動 航天器在近

20、地軌道上運動時,要受到大氣阻力的影響。阻力加速度可寫成如下形式 (5.11)式中, ——航天器相對大氣的飛行速度; ——大氣密度; ——航天器的有效阻力面積; ——為航天器的質量; ——阻力系數(shù)。,在航天器的運

21、行高度上,大氣密度 非常小,因此,空氣阻力加速度相對于地球中心引力是很小的,僅為一種阻力攝動。,(3)日月引力攝動 在衛(wèi)星相對于地球的運動中,日月引力攝動加速度,不是日月對衛(wèi)星的引力加速度,而是日月對衛(wèi)星的引力加速度與對地球的引力加速度的矢量差。后者的量值要比前者小得多。在2000km高度以下,日月攝動比地球形狀攝動至少小 倍。,,但在約36000km的地球同步高度上,地心引力加速度為

22、 ,地球扁率攝動加速度為 ,而月球與太陽的引力攝動加速度的最大值分別為 與 ??梢?,在同步高度上,日月攝動已與地球引力場攝動同一量級,必須要考慮。,航天器在地球附近運動時,日、月引力是典型的第三體攝動力,其攝動加速度為 (5.12)式中, ; ,

23、 , 分別為航天器和日、月的地心矢量, 和 是時間 的已知函數(shù),由日、地、月三體系統(tǒng)確定,與航天器運動無關。 , , 分別為日、月引力常數(shù)。,(4)太陽輻射壓力攝動 太陽輻射壓力是太陽輻射作用于航天器表面產(chǎn)生的攝動力。太陽輻射壓力引起的攝動加速度可表示為

24、 (5.13),,式中, ——航天器指向太陽的單位矢量; ——太陽輻射壓強,在地球附近近似 為常數(shù) ; ——航天器受輻射的有效面積; ——表面狀況系數(shù),取值范圍為0-2,對完全透光材料為0,對完全吸收材料為1,對完全反射材料為2; ——航天器質量。,(5

25、)小推力攝動 航天器入軌后,為了消除入軌誤差要進行軌道捕獲,捕獲后航天器才能進入運行軌道;由于需要抵消某些攝動,航天器運行過程中一般還需要進行軌道維持,有些航天器還需變軌和軌道轉移;此外,大多數(shù)航天器還需要進行姿態(tài)控制。 因此,航天器上往往安裝各種大小和方向的發(fā)動機,這些發(fā)動機在完成任務時會有一定的誤差,它們對航天器運動所產(chǎn)生的攝動稱為小推力攝動。在某些情況下,發(fā)動機產(chǎn)生的推力本身也可以作為攝動因素來處理。

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論