土木工程畢業(yè)設(shè)計計算書---辦公樓框架結(jié)構(gòu)設(shè)計_第1頁
已閱讀1頁,還剩101頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  目 錄</b></p><p>  前言----------------------------------1</p><p>  內(nèi)容摘要------------------------------2</p><p>  設(shè)計總說明----------------------------13</p&

2、gt;<p>  建筑設(shè)計說明------------------------------13</p><p>  結(jié)構(gòu)設(shè)計說明------------------------------15</p><p>  設(shè)計計算書--------------------------------</p><p>  工程總體概述----------------

3、-----------------</p><p>  結(jié)構(gòu)平面布置圖-------------------------------------</p><p>  荷載統(tǒng)計------------------------------------------</p><p>  框架結(jié)構(gòu)內(nèi)力計算---------------------------------<

4、;/p><p>  內(nèi)力組合---------------------------------------</p><p>  截面設(shè)計及配筋設(shè)計-----------------------------</p><p>  板的設(shè)計-------------------------------------</p><p>  基礎(chǔ)設(shè)計-----

5、--------------------------------</p><p>  樓梯設(shè)計-------------------------------------</p><p>  參考文獻-------------------------------------</p><p>  致謝辭----------------------------------

6、-----</p><p><b>  一.前 言</b></p><p>  畢業(yè)設(shè)計是大學本科教育培養(yǎng)目標實現(xiàn)的重要階段,是畢業(yè)前的綜合學習階段,是深化、拓寬、綜合教和學的重要過程,是對大學期間所學專業(yè)知識的全面總結(jié)。</p><p>  本組畢業(yè)設(shè)計題目為《**市某集團辦公樓框架結(jié)構(gòu)設(shè)計》。在畢設(shè)前期,我溫習了《結(jié)構(gòu)力學》、《鋼筋混凝

7、土》、《建筑結(jié)構(gòu)抗震設(shè)計》等知識,并借閱了《抗震規(guī)范》、《混凝土規(guī)范》、《荷載規(guī)范》等規(guī)范。在畢設(shè)中期,我們通過所學的基本理論、專業(yè)知識和基本技能進行建筑、結(jié)構(gòu)設(shè)計,本組在校成員齊心協(xié)力、分工合作,發(fā)揮了大家的團隊精神。在畢設(shè)后期,主要進行設(shè)計手稿的整理,并用電腦繪圖并得到老師的審批和指正,使我圓滿的完成了任務(wù),在此表示衷心的感謝。</p><p>  畢業(yè)設(shè)計的三個月里,在指導老師的幫助下,經(jīng)過資料查閱、設(shè)計計

8、算、論文撰寫以及外文的翻譯,加深了對新規(guī)范、規(guī)程、手冊等相關(guān)內(nèi)容的理解。鞏固了專業(yè)知識、提高了綜合分析、解決問題的能力。在繪圖時熟練掌握了AutoCAD,天正,及PKPM以上所有這些從不同方面達到了畢業(yè)設(shè)計的目的與要求。</p><p>  框架結(jié)構(gòu)設(shè)計的計算工作量很大,在計算過程中以手算為主,輔以一些計算軟件的校正。由于自己水平有限,難免有不妥和疏忽之處,敬請各位老師批評指正。</p><p

9、><b>  二零零七年六月十日</b></p><p><b>  二 內(nèi)容摘要</b></p><p>  本設(shè)計主要進行了結(jié)構(gòu)方案中橫向框架2軸框架的抗震設(shè)計。在確定框架布局之后,先進行了層間荷載代表值的計算,接著利用頂點位移法求出自震周期,進而按底部剪力法計算水平地震荷載作用下大小,進而求出在水平荷載作用下的結(jié)構(gòu)內(nèi)力(彎矩、剪力、軸

10、力)。接著計算豎向荷載(恒載及活荷載)作用下的結(jié)構(gòu)內(nèi)力,。 是找出最不利的一組或幾組內(nèi)力組合。 選取最安全的結(jié)果計算配筋并繪圖。此外還進行了結(jié)構(gòu)方案中的室內(nèi)樓梯的設(shè)計。完成了平臺板,梯段板,平臺梁等構(gòu)件的內(nèi)力和配筋計算及施工圖繪制。</p><p>  關(guān)鍵詞: 框架 結(jié)構(gòu)設(shè)計 抗震設(shè)計 </p><p><b>  Abstract</b></p

11、><p>  The purpose of the design is to do the anti-seismic design in the longitudinal frames of axis 2. When the directions of the frames is determined, firstly the weight of each floor is calculated .Then the

12、vibrate cycle is calculated by utilizing the peak-displacement method, then making the amount of the horizontal seismic force can be got by way of the bottom-shear force method. The seismic force can be assigned accordin

13、g to the shearing stiffness of the frames of the different axis. Then the int</p><p><b>  致謝: </b></p><p>  首先衷心的感謝我的導師石老師,在她的指導和幫助下,我得以順利完成畢業(yè)設(shè)計的任務(wù),雖然我本身的專業(yè)能力有限,但我想挑戰(zhàn)一下自己,選擇設(shè)計辦公樓,從建筑

14、設(shè)計到結(jié)構(gòu)設(shè)計,每進一步都得到了老師的支持與鼓勵。設(shè)計中遇到了太多的困難,在石老師的指導下得以克服并解決。</p><p>  由于設(shè)計工程量大,時間緊,任務(wù)重,不免有疏忽和差錯和不足的地方,懇請領(lǐng)導提出寶貴意見,在此不勝感激。</p><p><b>  科技資料翻譯</b></p><p><b>  一、科技資料原文:</

15、b></p><p>  Structural Systems to resist lateral loads</p><p>  Commonly Used structural Systems</p><p>  With loads measured in tens of thousands kips, there is little room in t

16、he design of high-rise buildings for excessively complex thoughts. Indeed, the better high-rise buildings carry the universal traits of simplicity of thought and clarity of expression.</p><p>  It does not f

17、ollow that there is no room for grand thoughts. Indeed, it is with such grand thoughts that the new family of high-rise buildings has evolved. Perhaps more important, the new concepts of but a few years ago have become c

18、ommonplace in today’ s technology.</p><p>  Omitting some concepts that are related strictly to the materials of construction, the most commonly used structural systems used in high-rise buildings can be cat

19、egorized as follows:</p><p>  Moment-resisting frames.</p><p>  Braced frames, including eccentrically braced frames.</p><p>  Shear walls, including steel plate shear walls.</p&

20、gt;<p>  Tube-in-tube structures.</p><p>  Tube-in-tube structures.</p><p>  Core-interactive structures.</p><p>  Cellular or bundled-tube systems.</p><p>  Par

21、ticularly with the recent trend toward more complex forms, but in response also to the need for increased stiffness to resist the forces from wind and earthquake, most high-rise buildings have structural systems built up

22、 of combinations of frames, braced bents, shear walls, and related systems. Further, for the taller buildings, the majorities are composed of interactive elements in three-dimensional arrays.</p><p>  The me

23、thod of combining these elements is the very essence of the design process for high-rise buildings. These combinations need evolve in response to environmental, functional, and cost considerations so as to provide effici

24、ent structures that provoke the architectural development to new heights. This is not to say that imaginative structural design can create great architecture. To the contrary, many examples of fine architecture have been

25、 created with only moderate support from the structura</p><p>  While comprehensive discussions of these seven systems are generally available in the literature, further discussion is warranted here .The ess

26、ence of the design process is distributed throughout the discussion.</p><p>  Moment-Resisting Frames</p><p>  Perhaps the most commonly used system in low-to medium-rise buildings, the moment-r

27、esisting frame, is characterized by linear horizontal and vertical members connected essentially rigidly at their joints. Such frames are used as a stand-alone system or in combination with other systems so as to provide

28、 the needed resistance to horizontal loads. In the taller of high-rise buildings, the system is likely to be found inappropriate for a stand-alone system, this because of the difficulty in mobilizi</p><p>  

29、Analysis can be accomplished by STRESS, STRUDL, or a host of other appropriate computer programs; analysis by the so-called portal method of the cantilever method has no place in today’s technology.</p><p> 

30、 Because of the intrinsic flexibility of the column/girder intersection, and because preliminary designs should aim to highlight weaknesses of systems, it is not unusual to use center-to-center dimensions for the frame i

31、n the preliminary analysis. Of course, in the latter phases of design, a realistic appraisal in-joint deformation is essential.</p><p>  Braced Frames</p><p>  The braced frame, intrinsically st

32、iffer than the moment –resisting frame, finds also greater application to higher-rise buildings. The system is characterized by linear horizontal, vertical, and diagonal members, connected simply or rigidly at their join

33、ts. It is used commonly in conjunction with other systems for taller buildings and as a stand-alone system in low-to medium-rise buildings.</p><p>  While the use of structural steel in braced frames is comm

34、on, concrete frames are more likely to be of the larger-scale variety.</p><p>  Of special interest in areas of high seismicity is the use of the eccentric braced frame.</p><p>  Again, analysis

35、 can be by STRESS, STRUDL, or any one of a series of two –or three dimensional analysis computer programs. And again, center-to-center dimensions are used commonly in the preliminary analysis.</p><p>  Shear

36、 walls</p><p>  The shear wall is yet another step forward along a progression of ever-stiffer structural systems. The system is characterized by relatively thin, generally (but not always) concrete elements

37、 that provide both structural strength and separation between building functions.</p><p>  In high-rise buildings, shear wall systems tend to have a relatively high aspect ratio, that is, their height tends

38、to be large compared to their width. Lacking tension in the foundation system, any structural element is limited in its ability to resist overturning moment by the width of the system and by the gravity load supported by

39、 the element. Limited to a narrow overturning, One obvious use of the system, which does have the needed width, is in the exterior walls of building, where the requ</p><p>  Structural steel shear walls, gen

40、erally stiffened against buckling by a concrete overlay, have found application where shear loads are high. The system, intrinsically more economical than steel bracing, is particularly effective in carrying shear loads

41、down through the taller floors in the areas immediately above grade. The sys tem has the further advantage of having high ductility a feature of particular importance in areas of high seismicity.</p><p>  Th

42、e analysis of shear wall systems is made complex because of the inevitable presence of large openings through these walls. Preliminary analysis can be by truss-analogy, by the finite element method, or by making use of a

43、 proprietary computer program designed to consider the interaction, or coupling, of shear walls.</p><p>  Framed or Braced Tubes</p><p>  The concept of the framed or braced or braced tube erupt

44、ed into the technology with the IBM Building in Pittsburgh, but was followed immediately with the twin 110-story towers of the World Trade Center, New York and a number of other buildings .The system is characterized by

45、three –dimensional frames, braced frames, or shear walls, forming a closed surface more or less cylindrical in nature, but of nearly any plan configuration. Because those columns that resist lateral forces are placed as

46、far </p><p>  The analysis of tubular structures is done using three-dimensional concepts, or by two- dimensional analogy, where possible, whichever method is used, it must be capable of accounting for the e

47、ffects of shear lag.</p><p>  The presence of shear lag, detected first in aircraft structures, is a serious limitation in the stiffness of framed tubes. The concept has limited recent applications of framed

48、 tubes to the shear of 60 stories. Designers have developed various techniques for reducing the effects of shear lag, most noticeably the use of belt trusses. This system finds application in buildings perhaps 40stories

49、and higher. However, except for possible aesthetic considerations, belt trusses interfere with nearly e</p><p>  Tube-in-Tube Structures</p><p>  The tubular framing system mobilizes every colum

50、n in the exterior wall in resisting over-turning and shearing forces. The term‘tube-in-tube’is largely self-explanatory in that a second ring of columns, the ring surrounding the central service core of the building, is

51、used as an inner framed or braced tube. The purpose of the second tube is to increase resistance to over turning and to increase lateral stiffness. The tubes need not be of the same character; that is, one tube could be

52、framed, whil</p><p>  In considering this system, is important to understand clearly the difference between the shear and the flexural components of deflection, the terms being taken from beam analogy. In a

53、framed tube, the shear component of deflection is associated with the bending deformation of columns and girders (i.e, the webs of the framed tube) while the flexural component is associated with the axial shortening and

54、 lengthening of columns (i.e, the flanges of the framed tube). In a braced tube, the shear comp</p><p>  Following beam analogy, if plane surfaces remain plane (i.e, the floor slabs),then axial stresses in t

55、he columns of the outer tube, being farther form the neutral axis, will be substantially larger than the axial stresses in the inner tube. However, in the tube-in-tube design, when optimized, the axial stresses in the in

56、ner ring of columns may be as high, or even higher, than the axial stresses in the outer ring. This seeming anomaly is associated with differences in the shearing component of st</p><p>  Core Interactive St

57、ructures</p><p>  Core interactive structures are a special case of a tube-in-tube wherein the two tubes are coupled together with some form of three-dimensional space frame. Indeed, the system is used often

58、 wherein the shear stiffness of the outer tube is zero. The United States Steel Building, Pittsburgh, illustrates the system very well. Here, the inner tube is a braced frame, the outer tube has no shear stiffness, and t

59、he two systems are coupled if they were considered as systems passing in a straight line fr</p><p>  The space structures of outrigger girders or trusses, that connect the inner tube to the outer tube, are l

60、ocated often at several levels in the building. The AT&T headquarters is an example of an astonishing array of interactive elements:</p><p>  The structural system is 94 ft (28.6m) wide, 196ft(59.7m) lo

61、ng, and 601ft (183.3m) high.</p><p>  Two inner tubes are provided, each 31ft(9.4m) by 40 ft (12.2m), centered 90 ft (27.4m) apart in the long direction of the building.</p><p>  The inner tubes

62、 are braced in the short direction, but with zero shear stiffness in the long direction.</p><p>  A single outer tube is supplied, which encircles the building perimeter.</p><p>  The outer tube

63、 is a moment-resisting frame, but with zero shear stiffness for the center50ft (15.2m) of each of the long sides.</p><p>  A space-truss hat structure is provided at the top of the building.</p><p

64、>  A similar space truss is located near the bottom of the building</p><p>  The entire assembly is laterally supported at the base on twin steel-plate tubes, because the shear stiffness of the outer tube

65、 goes to zero at the base of the building.</p><p>  Cellular structures</p><p>  A classic example of a cellular structure is the Sears Tower, Chicago, a bundled tube structure of nine separate

66、tubes. While the Sears Tower contains nine nearly identical tubes, the basic structural system has special application for buildings of irregular shape, as the several tubes need not be similar in plan shape, It is not u

67、ncommon that some of the individual tubes one of the strengths and one of the weaknesses of the system.</p><p>  This special weakness of this system, particularly in framed tubes, has to do with the concept

68、 of differential column shortening. The shortening of a column under load is given by the expression</p><p><b>  △=ΣfL/E</b></p><p>  For buildings of 12 ft (3.66m) floor-to-floor di

69、stances and an average compressive stress of 15 ksi (138MPa), the shortening of a column under load is 15 (12)(12)/29,000 or 0.074in (1.9mm) per story. At 50 stories, the column will have shortened to 3.7 in. (94mm) less

70、 than its unstressed length. Where one cell of a bundled tube system is, say, 50stories high and an adjacent cell is, say, 100stories high, those columns near the boundary between .the two systems need to have this diffe

71、rential defl</p><p>  Major structural work has been found to be needed at such locations. In at least one building, the Rialto Project, Melbourne, the structural engineer found it necessary to vertically pr

72、e-stress the lower height columns so as to reconcile the differential deflections of columns in close proximity with the post-tensioning of the shorter column simulating the weight to be added on to adjacent, higher colu

73、mns.</p><p><b>  二、原文翻譯:</b></p><p>  抗側(cè)向荷載的結(jié)構(gòu)體系</p><p><b>  常用的結(jié)構(gòu)體系</b></p><p>  若已測出荷載量達數(shù)千萬磅重,那么在高層建筑設(shè)計中就沒有多少可以進行極其復雜的構(gòu)思余地了。確實,較好的高層建筑普遍具有構(gòu)思簡單

74、、表現(xiàn)明晰的特點。</p><p>  這并不是說沒有進行宏觀構(gòu)思的余地。實際上,正是因為有了這種宏觀的構(gòu)思,新奇的高層建筑體系才得以發(fā)展,可能更重要的是:幾年以前才出現(xiàn)的一些新概念在今天的技術(shù)中已經(jīng)變得平常了。</p><p>  如果忽略一些與建筑材料密切相關(guān)的概念不談,高層建筑里最為常用的結(jié)構(gòu)體系便可分為如下幾類:</p><p><b>  抗彎矩

75、框架。</b></p><p>  支撐框架,包括偏心支撐框架。</p><p>  剪力墻,包括鋼板剪力墻。</p><p><b>  筒中框架。</b></p><p><b>  筒中筒結(jié)構(gòu)。</b></p><p><b>  核心交互結(jié)構(gòu)。&

76、lt;/b></p><p>  框格體系或束筒體系。</p><p>  特別是由于最近趨向于更復雜的建筑形式,同時也需要增加剛度以抵抗幾力和地震力,大多數(shù)高層建筑都具有由框架、支撐構(gòu)架、剪力墻和相關(guān)體系相結(jié)合而構(gòu)成的體系。而且,就較高的建筑物而言,大多數(shù)都是由交互式構(gòu)件組成三維陳列。</p><p>  將這些構(gòu)件結(jié)合起來的方法正是高層建筑設(shè)計方法的本質(zhì)。

77、其結(jié)合方式需要在考慮環(huán)境、功能和費用后再發(fā)展,以便提供促使建筑發(fā)展達到新高度的有效結(jié)構(gòu)。這并不是說富于想象力的結(jié)構(gòu)設(shè)計就能夠創(chuàng)造出偉大建筑。正相反,有許多例優(yōu)美的建筑僅得到結(jié)構(gòu)工程師適當?shù)闹С志捅粍?chuàng)造出來了,然而,如果沒有天賦甚厚的建筑師的創(chuàng)造力的指導,那么,得以發(fā)展的就只能是好的結(jié)構(gòu),并非是偉大的建筑。無論如何,要想創(chuàng)造出高層建筑真正非凡的設(shè)計,兩者都需要最好的。</p><p>  雖然在文獻中通??梢砸姷接?/p>

78、關(guān)這七種體系的全面性討論,但是在這里還值得進一步討論。設(shè)計方法的本質(zhì)貫穿于整個討論。設(shè)計方法的本質(zhì)貫穿于整個討論中。</p><p><b>  抗彎矩框架</b></p><p>  抗彎矩框架也許是低,中高度的建筑中常用的體系,它具有線性水平構(gòu)件和垂直構(gòu)件在接頭處基本剛接之特點。這種框架用作獨立的體系,或者和其他體系結(jié)合起來使用,以便提供所需要水平荷載抵抗力。對于

79、較高的高層建筑,可能會發(fā)現(xiàn)該本系不宜作為獨立體系,這是因為在側(cè)向力的作用下難以調(diào)動足夠的剛度。</p><p>  我們可以利用STRESS,STRUDL 或者其他大量合適的計算機程序進行結(jié)構(gòu)分析。所謂的門架法分析或懸臂法分析在當今的技術(shù)中無一席之地,由于柱梁節(jié)點固有柔性,并且由于初步設(shè)計應(yīng)該力求突出體系的弱點,所以在初析中使用框架的中心距尺寸設(shè)計是司空慣的。當然,在設(shè)計的后期階段,實際地評價結(jié)點的變形很有必要。

80、</p><p><b>  支撐框架</b></p><p>  支撐框架實際上剛度比抗彎矩框架強,在高層建筑中也得到更廣泛的應(yīng)用。這種體系以其結(jié)點處鉸接或則接的線性水平構(gòu)件、垂直構(gòu)件和斜撐構(gòu)件而具特色,它通常與其他體系共同用于較高的建筑,并且作為一種獨立的體系用在低、中高度的建筑中。</p><p>  三.建筑設(shè)計說明部分</p&g

81、t;<p><b>  一、工程概況:</b></p><p>  工程名稱:泰安市某集團辦公樓;</p><p><b>  工程位置:泰安市;</b></p><p>  工程總面積:4562㎡,主樓85,高19.09m,每層層高3.6m</p><p>  結(jié)構(gòu)形式:現(xiàn)澆整體框架

82、。</p><p>  二、建筑物功能與特點:</p><p>  該擬建的建筑位于泰安市市內(nèi),設(shè)計內(nèi)容:此樓為辦公樓,此建筑占地面積 912.4m2 ,總建筑面積為4562 m2</p><p><b>  平面設(shè)計</b></p><p>  建筑朝向為南北向,平面布置滿足長寬比小于5,采用縱向3.9m、橫向6.0m

83、、2.4m、6.0m的柱距,滿足建筑開間模數(shù)和進深的要求。</p><p><b>  2、立面設(shè)計</b></p><p>  該建筑立面為了滿足采光和美觀需求,設(shè)置了大面積的玻璃窗。外墻面根據(jù)《98J1——工程做法》選用面磚飾面,不同分隔區(qū)采用不同的顏色區(qū)隔,以增強美感。</p><p><b>  3、防火</b>&

84、lt;/p><p>  防火等級為二級,安全疏散距離滿足房門至外部出口或封閉樓梯間最大距離小于35m,大房間設(shè)前后兩個門,小房間設(shè)一個門,滿足防火要求;室內(nèi)消火栓設(shè)在走廊兩側(cè),每層兩側(cè)及中間設(shè)3個消火栓,最大間距25m,滿足間距50m的要求。</p><p><b>  4、抗震</b></p><p>  建筑的平立面布置規(guī)則,建筑的質(zhì)量分布和剛

85、度變化均勻,樓層沒有錯層,滿足抗震要求。</p><p><b>  屋面</b></p><p>  屋面形式為平屋頂;平屋頂排水坡度為2%,排水坡度的形式為墊置坡度,排水方式為內(nèi)排水。屋面做法采用《98J1——工程做法》中柔性防水,聚苯乙烯泡沫塑料板保溫層屋面。</p><p><b>  三、設(shè)計資料</b><

86、/p><p><b> ?。ㄒ唬?、自然條件</b></p><p>  1、工程地質(zhì)條件:詳見地質(zhì)勘查報告。</p><p>  2、抗震設(shè)防: 7 度</p><p>  3、防火等級: 二級</p><p>  4、建筑物類型: 乙類</p><p>  5、

87、基本風壓: W0= 0.40 KN/m2,主導風向:西北風</p><p>  6、基本雪壓: S0= 0.35 KN/m2</p><p>  7、凍土深度: -0.6 m</p><p>  8、地下水位: 最低:-1.7 m 最高:-1.5 m</p><p>  9、氣象條件: 年平均溫度:12 oC

88、 最高溫度:42 oC 最低溫度:-12 oC</p><p>  年總降雨量:710 mm </p><p>  10、樓面活荷: 辦公室:2.0 KN/m2;走道:2.0 KN/m2。</p><p><b>  (二)、工程做法</b></p><p>  1、屋面做法——高聚物改性瀝青卷材防水</

89、p><p> ?、?厚高聚物改性瀝青卷材防水層(帶砂、小片石,作為保護層)</p><p>  ②20厚1:3水泥砂漿層找平層</p><p> ?、?:6水泥焦渣找2%坡,最薄處30厚</p><p>  ④50厚聚苯乙烯泡沫塑料板保溫層</p><p><b>  ⑤鋼筋混凝土基層</b><

90、/p><p><b>  2、樓面做法</b></p><p> ?。?)房間、走道樓面——現(xiàn)制水磨石</p><p> ?、?2厚1:2.5水泥磨石樓面磨光打蠟</p><p>  ②素水泥漿結(jié)合層一道</p><p> ?、?0厚1:3水泥砂漿找平層,上臥分隔條。</p><p

91、>  ④40厚C20細石混凝土墊層(后澆層)</p><p><b> ?、蒌摻罨炷翗前?lt;/b></p><p>  (2)衛(wèi)生間樓面——鋪地磚</p><p> ?、?厚地磚樓面,干水泥擦縫</p><p> ?、谌鏊厮嗝妫⑦m量清水)</p><p> ?、?0厚1:4干硬性水泥砂漿

92、結(jié)合層</p><p> ?、?0厚C20細石混凝土向地漏找平,最薄處30厚</p><p> ?、菥郯滨ト橥磕し浪畬雍?.5~1.8或用其他防水涂料防水層,防水層周邊卷起高150</p><p>  ⑥20厚1:3水泥砂漿找平層,四周抹小八字角</p><p> ?、攥F(xiàn)澆鋼筋混凝土樓板</p><p> ?。?)內(nèi)

93、外墻面做法——紙筋(麻刀)灰墻面</p><p><b> ?、偎?nèi)墻涂料</b></p><p>  ②2厚紙筋(麻刀)灰抹面</p><p> ?、?厚1:3石灰膏砂漿</p><p> ?、?厚1:3:9水泥石膏砂漿打底劃出紋理</p><p> ?、菁託饣炷两缑嫣幚韯┮坏?lt;/p&g

94、t;<p> ?。?)散水做法:混凝土散水</p><p> ?、?0厚C15混凝土撒1:1水泥砂子,壓實趕光</p><p> ?、?50厚3:7灰土墊層</p><p> ?、鬯赝梁粚嵪蛲馄?%</p><p>  四. 結(jié)構(gòu)設(shè)計計算書</p><p>  結(jié)構(gòu)布置及結(jié)構(gòu)計算簡圖的確定,構(gòu)平面布置如圖

95、1所示。 </p><p>  2、確定梁柱截面尺寸:</p><p>  主梁:邊跨(AB,CD)梁: h=(1/8~1/12)l=(1/8~1/12) ×6000=750mm~500mm</p><p>  取h=600mm,b=(1/3~1/2)l=(1/3~1/2) ×600=200~300,取b=250mm</p>&

96、lt;p>  中跨(BC)梁: h=(1/8~1/12)l=(1/8~1/12) ×2400=300mm~200mm</p><p>  取h=400mm,b=250mm</p><p>  連系梁:邊柱(A軸,D軸),中柱(B軸,C軸)上連系梁 : </p><p>  h=(1/12~1/15)l=(1/12~1/15) ×3900=

97、325mm~260mm</p><p>  取 h=400mm,b>400/4=100 取b=250mm</p><p>  柱截面:H=4600mm,b=(1/15~1/20)H=(1/8~1/12) ×4600=306mm~230mm </p><p>  取b×h=300 mm×450mm</p>&l

98、t;p>  現(xiàn)澆樓板厚100mm,滿足h/l01≥ 1/50</p><p>  3、計算簡圖的確定(見圖2)</p><p>  根據(jù)地質(zhì)資料,確定基礎(chǔ)頂面離室外地面為700mm,由此求得底層層高為5.5m。各梁柱構(gòu)件的線剛度經(jīng)計算后列于圖2,其中在求梁截面慣性矩時考慮到現(xiàn)澆樓板的作用,梁取I=2I0(I0為不考慮樓板翼緣作用的梁截面慣性矩)。</p><p&g

99、t;<b>  AB,CD跨梁:</b></p><p><b>  BC跨梁:</b></p><p><b>  中部各層柱: </b></p><p><b>  首層柱: </b></p><p><b>  荷載計算</b>

100、</p><p><b>  恒載計算</b></p><p>  屋面框架梁線荷載標準值:</p><p>  三氈四油上鋪小石子防水層 0.35KN/ m2</p><p>  20厚1:3水泥砂漿層找平層 0.02×20=0

101、.4 KN/ m2</p><p>  120厚膨脹珍珠巖保溫層 0.12×7=0.84 KN/ m2</p><p>  100厚現(xiàn)澆鋼筋混凝土樓板 0.1×25=2.5 KN/ m2</p><p>  裝飾層:15厚紙筋石灰抹底 0

102、.015×16=0.24 KN/ m2</p><p>  屋面恒載: 4.33KN/m2</p><p>  邊跨(AB、CD跨)框架梁自重 0.25×0.6×25=3.75 KN/ m2 梁側(cè)粉刷

103、 2×(0.6-0.1)×0.02×17=0.34 KN/ m2</p><p>  中跨框架梁自重 0.25×0.4×25=2.5KN/ m2</p><p>  梁側(cè)粉刷 2×(0.4-0.1)×0.02×17=

104、0.2 KN/ m2</p><p>  因此,作用在頂層框架梁上的線荷載為:(圖3)</p><p>  g5AB1= g5CD1=4.09KN/ m</p><p>  g5BC1= 2.7 KN/ m</p><p>  g5AB2= g5CD2=4.33×3.9=16.89 KN/ m</p><p>

105、;  g5CD2= 4.33×2.4=10.39KN/ m</p><p>  (2)樓面框架梁線荷載標準值</p><p>  20厚水泥砂漿面層 0.02×20=0.40KN/m2</p><p>  100厚現(xiàn)澆鋼筋混凝土樓板 0.1×

106、25=2.5 KN/ m2</p><p>  15厚紙筋石灰抹底 0.015×16=0.24 KN/ m2</p><p>  樓面恒載 3.14 KN/ m2</p><p>  邊跨(AB、CD跨)框架梁自重及梁側(cè)粉

107、刷 4.09 KN/ m</p><p>  邊跨填充墻自重 0.24×(3.6-0.6)×19=13.68KN/ m</p><p>  墻面粉刷 (3.6-0.6)×0.02×2×17=2.04 KN/ m</p><p>

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論