外文翻譯--塑料注塑成型的實(shí)驗(yàn)室實(shí)驗(yàn)與實(shí)踐_第1頁
已閱讀1頁,還剩8頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  附錄</b></p><p><b>  附1:外文文獻(xiàn)翻譯</b></p><p>  Practice vs. laboratory tests for plastic injection moulding</p><p>  M. Van Stappen, K. Vandierendon

2、ck, C. Mol, E. Beeckman and E. De Clercq </p><p>  Abstract:Different types of anti-sticking coatings have been applied industrially on injection moulds for various types of plastics. Very often these tests

3、 are being done on a trial-and-error basis and results obtained are difficult to interpret. WTCM/CRIF has developed laboratory equipment where the injection moulding process can be simulated and demoulding forces and fri

4、ction coefficients can be measured. These measurements were compared with surface energy calculations of the coated surfaces </p><p>  Author Keywords: Injection moulding; PVD coating; Modeling; Surface ener

5、gy </p><p>  Article Outline </p><p>  1. Introduction </p><p>  2. Experimental details </p><p>  3. Results and discussion </p><p>  4. Conclusions </

6、p><p>  References</p><p>  1. Introduction </p><p>  PVD coatings have found their way into industry for several applications like metal cutting and deep drawing. Their use in plastic

7、 injection moulds has given both positive and negative results. The unreproducible character of the results hinders further implementation in industry. To valorise the intrinsically good coating properties like chemical

8、inertness vs. plastics to enhance demoulding, more insight is needed into the mechanism of interaction between the mould surface and the plastic mater</p><p>  To our knowledge, a systematic study of the inf

9、luence of mould surface roughness, mould coating, properties of the polymer like Young's modulus, surface energy, polarity, structures, etc. on possible binding mechanisms between the mould surface and the plastic ma

10、terial has never been carried out. This makes it practically impossible to understand demoulding mechanisms and, as a consequence of this, to select a proper coating for the injection mould. The purpose of this work was

11、to try to simulat</p><p>  2. Experimental details </p><p>  Laboratory equipment has been built to measure demoulding forces and friction coefficients. The mould itself is made out of tool stee

12、l 1.2083 and has a diameter of 64 mm and a height of 30 mm (Fig. 1). The thickness of the moulded part is 2 mm. A pressure sensor measures the demoulding forces. The temperature inside the mould is measured by thermocoup

13、les as presented in Fig. 1. All moulds were hardened to a hardness of 56 HRC. </p><p>  Fig. 1. A cylindrical plastic part injection moulded around a mould.</p><p>  After a running-in period of

14、 40 injections, the demoulding force was measured 10 times for each coating–plastic material combination. Surface energy was measured on the surface of the coating and on the surface of the plastic material using the mod

15、el of Owens and Wendt. A Digidrop GBX apparatus has been used based on water and di-iodomethane as testing liquids. To measure the total surface energy, the dispersive surface energy and the polar surface energy are meas

16、ured. </p><p>  Injection moulding was carried out as follows. In the first application, a polyurethane plastic material with tradename DESMOPAN 385 S was injection moulded using uncoated moulds and moulds c

17、oated with, respectively, a TiN and a CrN coating. In the second application, three types of polymers were tested on a TiN coated mould and an uncoated mould. Two elastomers (trade name HYTREL G 3548 W, which is a block-

18、copolyester, and SANTOPRENE 101-73, which is a blend of polypropylene and EPDM), and EVOP</p><p>  3. Results and discussion </p><p>  The demoulding forces measured for the first application ar

19、e given in Table 1. </p><p>  Table 1. Demoulding forces (N) for DESMOPAN </p><p>  The demoulding forces for the second application are given in Fig. 2. </p><p>  Fig. 2. Demouldin

20、g forces (in N) for three materials: HYTREL, EVOPRENE, SANTOPRENE.</p><p>  This demoulding behaviour has also been observed in industrial practice, so the demoulding laboratory apparatus is a good simulatio

21、n of reality. To explain these results, an attempt was made to find a correlation with the surface energy measurements. Both total surface energy as well as polar surface energy in mJ/m2 were compared for both coated sur

22、faces and plastic materials.</p><p>  Fig. 3. Total surface energies (mJ/m2) of the different coatings and plastic materials.</p><p>  In order to explain the demoulding behaviour, an attempt wa

23、s made to make a correlation between demoulding forces measured and the surface energy values. It should be expected that when the surface energy of the coated surface is lower than the surface energy of the plastic mate

24、rial, an easy demoulding behaviour could result as a consequence of low material affinity between coating and plastic material. Because the ratio of polar vs. dispersive surface energy varies for the different plastic ma

25、t</p><p>  For the demoulding forces measured in the first case (Table 1), it could be seen that a CrN coating, especially, could offer good demoulding behaviour. When we compare ( Fig. 3) the surface energy

26、 values of DESMOPAN with the values for the mould surfaces — STAVAX (=uncoated), CrN and TiN — then it can be seen, for both total surface energy as polar surface energy, that the measured values for DESMOPAN are lower c

27、ompared to the mould surface values. This means that there is no correlation between</p><p>  If our hypothesis was correct from the beginning, we should conclude that the demoulding force for HYTREL should

28、be small and should be large for SANTOPRENE. One can see from </p><p>  Fig. 2. that this is not the case. </p><p>  Fig. 4. Polar surface energies (mJ/m2) of the different coatings and plastic

29、materials.</p><p>  When one looks at the polar surface energy values (Fig. 4), the three plastic materials have a lower value than the mould surface and SANTOPRENE and EVOPRENE have a lower value than HYTRE

30、L. Even when other surface energy criteria are used, e.g. the lower the energy of the mould surface the lower the demoulding force (3), even then no correlation can be found. It can be seen that a TiN coating always incr

31、eases the surface energy and, on the other hand, good demoulding is sometimes seen, e.g. for </p><p>  Hence, we can conclude that, based on the surface energy values measured, no correlation could be found

32、within the demoulding forces. Obviously, other parameters, such as roughness and injection temperature, also play an important role in explaining the demoulding behaviour. </p><p>  In order to continue the

33、research work to explain the demoulding behaviour, we will focus on five industrial demonstrations and try to incorporate all relevant parameters: coating properties, plastic material properties and injection parameters.

34、 </p><p>  4. Conclusions </p><p>  No correlation could be found between the demoulding behaviour of plastics vs. coated moulds and the measured surface energy values. </p><p>  Ot

35、her parameters must also influence this demoulding behaviour. Further research will focus on other parameters like coating properties, plastic properties and injection parameters. </p><p>  References </p

36、><p>  1. Annonymous, Big savings made with coated injection moulding tool, Precision Toolmaker 6 (1998),138. </p><p>  2. O. Kayser , PVD-Beschichtungen schützen werkzeug und schmelze. Kunsts

37、toffe 7 (1995), p. 98. </p><p>  3. M. Grischke , Hartstoffschichten mit niedriger Klebneigung. JOT 1 (1996), p. 15. </p><p><b>  譯</b></p><p>  塑料注塑成型的實(shí)驗(yàn)室實(shí)驗(yàn)與實(shí)踐</p>

38、;<p>  M. Van Stappen, K. Vandierendonck, C. Mol, E. Beeckman and E. De Clercq</p><p>  摘 要:對于不同類型的塑料,不同類型的防粘涂料已應(yīng)用于注塑模具工業(yè)。很多時(shí)候,這些試驗(yàn)正在做一個(gè)反復(fù)試驗(yàn),依據(jù)和結(jié)果都難以解釋.WTCM/CRIF 開發(fā)了可以模擬注射成型過程的實(shí)驗(yàn)室設(shè)備,并且可以通過測量得到脫模力和摩擦系數(shù)

39、。這些測量數(shù)據(jù)與計(jì)算所得的涂層表面和塑料材料的表面能量值進(jìn)行比較,以找到相關(guān)聯(lián)系。使用這種方法可能為注射成型的涂料作出方便和廉價(jià)的選擇。另一重要好處是使了解和塑造模具成型塑料的接口變得可能。這一為塑料注射成型選擇涂料新的方法已經(jīng)應(yīng)用于各種PVD涂料,并且這種方法在塑料注射成型工業(yè)中也得到了時(shí)間。</p><p>  關(guān)鍵詞:注射成型;PVD 涂層;塑造;表面能</p><p><b&

40、gt;  文章綱要</b></p><p><b>  1.介紹</b></p><p><b>  2.實(shí)驗(yàn)內(nèi)容</b></p><p><b>  3. 結(jié)果和討論</b></p><p><b>  4. 結(jié)論</b></p>

41、<p><b>  參考文獻(xiàn)</b></p><p><b>  1.介紹</b></p><p>  PVE涂層在工業(yè)中得到了一些應(yīng)用,如金屬切口和深沖壓。他們在塑料注射模具中的應(yīng)用產(chǎn)生了正面和負(fù)面的結(jié)果。它的不可再生的性質(zhì)阻礙了它在工業(yè)中的更廣泛的應(yīng)用。確定性質(zhì)好的涂料性能,如對塑料的化學(xué)惰性,來幫助脫模,關(guān)于找到模具型腔表面和

42、塑料材料之間的在注射成型期間的相互化學(xué)作用機(jī)理,需要更多的研究。</p><p>  就我們所知, 有系統(tǒng)的研究模具表面粗糙度、模具涂層和熱性能的影響,如楊氏模量、表面能量、 極性、結(jié)構(gòu)等,在模具表面和塑料材料之間找到一個(gè)可能的關(guān)聯(lián)機(jī)制還從沒有進(jìn)行過。這使得了解脫模機(jī)理和為注塑模具選擇一個(gè)合適的涂料幾乎不可能。這項(xiàng)工作的目的是在實(shí)驗(yàn)室里設(shè)法模仿注射成型的過程,并且找到涂層模具的表面能測量結(jié)果和塑料材料的表面能測量

43、結(jié)果的相互關(guān)系。這樣可以得到一種方法去選擇適當(dāng)?shù)耐繉訛槟骋槐蛔⑸涞乃芰稀?lt;/p><p><b>  2.實(shí)驗(yàn)內(nèi)容</b></p><p>  實(shí)驗(yàn)試?yán)锝⒘藢?shí)驗(yàn)設(shè)備來測量脫模力和摩擦系數(shù)。模具用工具鋼1.2083做成,直徑64毫米和高30毫米(如圖 1)。成型塑件的厚度是2mm。壓力傳感器測量脫模力。模具里的溫度由熱電偶測得。模具被淬硬到56HRC。</p&g

44、t;<p>  圖1.圓柱形塑料零件的注射成型</p><p>  在經(jīng)過40次跑合注射以后,每個(gè)涂層與塑料的結(jié)合的地方的脫模力被測量了10次。通過在涂層的表面和在塑料材料的表面使用Owens和Wendt模型測量表面能。一種以水和鄰苯二甲酸二碘甲烷作為測試液體的Digidrop GBX設(shè)備被使用,去測量表面總能量、分散的能量和集中的能量。</p><p>  注射成型的執(zhí)行過

45、程如下,在第一步中,將商品名DESMOPAN 385 S的聚氨酯塑料材料分別注入生產(chǎn)時(shí)沒有上涂層的模具、涂上TiN的模具和涂有CrN 涂層的模具。第二步,將三種類型的聚合物分別在涂他TiN的模具和未上涂層的模具上進(jìn)行測試。二個(gè)彈性材料(商標(biāo)HYTREL G 3548 W,是一個(gè)塊聚酯和SANTOPRENE 101-73,是聚丙烯和EPDM的混合)和EVOPRENE,包括聚苯乙烯和丁二烯。</p><p><

46、b>  3.結(jié)果和討論</b></p><p>  第一步中測量的脫模力如表1</p><p>  表1. DESMOPAN的脫模力(N)</p><p>  第二步中三種材料的脫模力如圖2</p><p>  圖2.HYTREL、EVOPRENE、 SANTOPRENE三種材料的脫模力(N)</p><

47、p>  這種脫模行為,也出現(xiàn)在工業(yè)實(shí)踐中, 所以脫模實(shí)驗(yàn)室儀器可以做一個(gè)很好的現(xiàn)實(shí)模擬。 試圖去找到一種與表面能量測量相關(guān)聯(lián)的因素來解釋這個(gè)結(jié)果,不同涂層模具和不同塑料材料的總表面能和集中表面能(mJ/m2)將進(jìn)行比較。</p><p>  圖3.不同涂層和塑料材料的總表面能</p><p>  為了解釋脫模過程,有人企圖把測定的脫模力和表能量值聯(lián)系起來。正如所預(yù)料到的那樣,當(dāng)涂層表

48、面的表面能低于塑料材料的表面能時(shí),從易脫模行為可以得出一個(gè)結(jié)論就是涂料和塑料材料的低親和性。因?yàn)榧袑Ψ稚⒌谋砻婺鼙嚷蕿椴煌苄圆牧隙淖?因此兩個(gè)表面能值都應(yīng)被考慮到。</p><p>  從第一步中所測定的脫模力 (見表1 ) 可以看出CrN涂料尤其可以提供良好的脫模行為。 從圖3中,我們比較DESMOPAN和未上涂層、上CrN涂層、上TiN涂層的模具的表面能值,我們可以看到,無論是總表面能還是集中表面能,相

49、對于模具表面的值,DESMOPAN的實(shí)測值較低。這意味著測定的脫模力和表面能量值毫無關(guān)聯(lián)。然而,現(xiàn)在看來 CrN表面涂層具有最低的表面能比TiN表面涂層和沒有表面涂層。從圖3的表面總能量值我們可以看出SANTOPRENE的值最低,HYTREL最高。</p><p>  如果從一開始我們的假設(shè)是正確的,那么我們可以的得出一個(gè)結(jié)論,HYTREL的脫模力應(yīng)較小,SANTOPRENE的脫模力較大。然而從圖2看,結(jié)果卻并不

50、是這樣。</p><p>  圖4. 不同涂層和塑料材料的集中表面能</p><p>  從圖4的集中表面能量值可以看出,三個(gè)塑料材料具有較低的值相對于于未涂層模具表面,SANTOPRENE和EVOPRENE的值較低比起HYTREL。即使其他表面能準(zhǔn)則的使用,例如:低能量的模具表面有較低的脫模力,即使沒有適當(dāng)?shù)年P(guān)聯(lián)可以發(fā)現(xiàn)??梢钥闯觯琓iN涂層總是增加表面能量,在另一方面,HYTREL和D

51、ESMOPAN有時(shí)具有好的脫模效果,EVOPRENE有時(shí)脫模效果不好。</p><p>  因此,基于表面能量值的測量,我們可以得出結(jié)論,在表面能值和脫模力之間沒有發(fā)現(xiàn)任何關(guān)聯(lián)。</p><p>  為了繼續(xù)研究工作,解釋脫模行為,我們將重點(diǎn)放在五個(gè)示范產(chǎn)業(yè),試圖去收集所有相關(guān)聯(lián)的參數(shù),如涂料的性能, 塑料材料的性能及注塑參數(shù)。</p><p><b> 

52、 4.結(jié)論</b></p><p>  在塑料脫模行為與塑料涂層模具和被測表面能量值之間沒有找到任何關(guān)聯(lián)。</p><p>  其他參數(shù)將對脫模行為產(chǎn)生影響。進(jìn)一步的研究將集中在其他參數(shù),如涂料的性能,塑料的性能及注塑參數(shù)。</p><p><b>  參考資料</b></p><p>  1. Annony

53、mous,Big savings made with coated injection moulding tool, Precision Toolmaker 6 (1998), 138. </p><p>  2. O. Kayser , PVD-Beschichtungen schützen werkzeug und schmelze. Kunststoffe 7 (1995), p. 98. <

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論