版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 英文原文</b></p><p> Study on destressing technology for a roadway driven along goaf in a fully mechanized top-coal caving face</p><p> QU Qun-di </p><p> (
2、School of Energy Science&Engineering,China University of Mining and Technology ,Xuzhou 221008,China)</p><p> Abstract Based on the deformation characteristics of the roadways driven along goaf in fully
3、mechanized top-coal caving faces,the author considers that it is the key to ensure the stability of surrounding rocks of roadway driven along goaf to control the deformation during the period affected by mining.Consideri
4、ng the characteristics of the roadway layout in fully mechanized top-coal caving faces,a technical scheme of destressing is put forward and the destressing effect is analyzed by using the</p><p> Keywords f
5、ully mechanized top-coal caving,gob-side entry driving,</p><p> roadway layout</p><p> 1.Deformation characteristics of the gob-side entry in a fully mechanized top-coal caving face </p>
6、;<p> In the light of key stratum theory and the law of overlying strata movement , we know that along the dip direction the main roof broke in coal wall of the lower district sublevel and formed a rock beam stru
7、cture called big structure of surrounding rocks after the upper district sublevel is extracted forward. At the same time , the peak of side abutment pressure is transferred to the depth away from the periphery along the
8、dip direction and the coal body under the big structure lies in stress-rel</p><p> Fig.1 The structure relationship between gob-side entry and overlying strata in a fully mechanized top-coal caving face<
9、/p><p> (1)During the period of roadway excavation, the deformation law of the gob-side entry in a fully mechanized top-coal caving face is similar to that of general soft rock roadway.The roadway excavation p
10、lays a little effect on the stability of the big structure.The gob-side entry occurscertain value of deformation because the stress around the roadway changes and comes out stress concentration by roadway excavation.<
11、/p><p> (2)During the period after roadway excavation and before mining effect , the big structure of surrounding rocks is stable and the deformation around the roadway is small.</p><p> (3)When
12、the gob-side entry is affected by the mining of the current fully mechanized top-coal caving face , the main roof broke again and the original equilibrium of overlying strata is badly destroyed. The rock block A and B ar
13、e in the state of movement and instability. Especially , serious deformation of the surrounding rocks happens in the gob-side entry due to the rotation and subsidence of the key block B and the quantity of deformation du
14、ring the period affected by mining is 5-6 times as l</p><p> 2.Destressing mechanism for a gob-side entry in a fully mechanized top-coal caving face</p><p> Arranging destressing entry in surr
15、ounding rocks of a roadway is an effective technical method to forwardly reduce the stress around the roadway and prevent the roadway from occurring severe deformation and damage[3 ] . In China , arranging a destressing
16、entry above a roadway has mostly been adopted to protect some important chambers which serve the mine for a long period. The service period of an entry is relatively shorter and a great deal of capital should be input fo
17、r the additional excavati</p><p> Standing shot in coal body of both sides of the destressing entry is adopted ahead of the current mining face to create a destressing zone in enough width above the gob-sid
18、e entry. This destressing zone can act as a cushion to absorb and lessen the action of high stress induced by the rotation and subsidence of the key block B , so the extent of stress transfer to the gob-side entry decrea
19、ses and the destressing effect has been achieved for the second time. As a result , the large deformation of</p><p> 3.Numerical analysis of the destressing effect[4]</p><p> Based on the fiel
20、d test conditions of the destressing technology , the software of UDEC 3.0 is used to analyze the main factors which affect the destressing effect . The test conditions of Xinji Coal Mine are as follows. The average thic
21、kness and dip angle of the coal seam are respectively 7.5 m and 12°and the Protodyakonov coefficient of the coal seam is 0.7. The immediate roof and floor of the coal seam are both sandy mudstone in lower strength a
22、nd the thickness of the immediate roof is 2.0 m.</p><p> 3.1 Influence of destressing entry location on the destressing effect</p><p> Because the gob-side tailentry and destressing entry are
23、respectively laid out along the roof and floor of the coal seam, the change of vertical interval between two entries is not considered here. The gob-side tailentry and distressing entry are laid out as shown in Fig.2 to
24、ensure the integrality of the coal roof of the gob-side tailentry and avoid the trans fixion between the destressing zone and the neighboring gob area.</p><p> Fig.2 Sectional view of roadway layout of the
25、 test site</p><p> 1 ———Headentry; 2 ———Gob - side tailentry ; 3 ———Destressing entry ;4 ———Gas drain ; 5 ———Standing shot zone</p><p> Suppose l represents the horizontal distance between the
26、 destressing entry and gob-side tailentry. With a rise of l ,the deformation amount of the gob-side tailentry will increase , and the destressing effect decreases. The deformations of the tailentry at different values o
27、f l are shown in Fig.3.Actually , with the shift of the destressing entry into deeper coal body along the coal seam dip , a stable coal pillar above the gob-side tailentry comes to appear and the pillar width will contin
28、uous</p><p> 3.2Influence of the width and intensity of standing shot on the destressing effect</p><p> The width values of the standing shot zone in each coal side of the destressing entry ar
29、e 3,5 and 7m respectively ,are numerically simulated. The calculation results indicate that with the width increase of the standing shot zone, the roof stress and convergence of the gob-side tailentry obviously decrease.
30、 The impact of the variation of the standing shot width on stress and deformation of the narrow coal pillar is relatively larger while relatively smaller in the solid coal side. When the stand</p><p> Fig.3
31、 Relationship between l and deformation of the gob-side tailentry</p><p> 1 ———Convergence between two ribs ; 2 ———Roof-to-floor convergence near the goaf ;</p><p> 3 ———Roof-to-floor converg
32、ence near the solid coal</p><p> The intensity of the standing shot also markedly affects the destressing effect . As shown in Fig4 , in the standing shot zones of both destressing entry sides , the better
33、the standing shot effect , the more discrete and weaker the coal body.Good standing shot can further reduce the stress transference from the overlying strata down to the surrounding coal of theGob-side tailentry and its
34、soft floor strata , and improve the destressing effect of the gob-side tailentry’s surrounding strata.</p><p> Fig.4 Displacement vectors of the gob-side tailentry’s surrounding rocks in different intensity
35、 of standing shot</p><p> (a) Strong standing shot intensity; (b) Weak standing shot intensity</p><p> 3.3 Influence of the operation procedure on the destressing effect</p><p>
36、 There may be three types of available operation sequences as follows. First , the gob-side tailentry is driven at thebeginning of the sequence , then the destressing entry is excavated , and the standing shot is carried
37、 out in the end ; Second , the sequence starts with the destressing entry excavation , then the gob-side tailentry is driven , and the standing shot is finally done with the advancing of the mining abutment pressure of t
38、he coal face ; Third , the destressing entry is excavated in </p><p> 4.Effect of the applied scheme</p><p> On the basis of the practical factors which include the geological conditions of th
39、e fully mechanized top-coal caving mining face No.1309 in Xinji Coal Mine , preventing the roof caving in the course of tailentry excavation , eliminating thewater intrusion from the upper neighboring goaf and spontaneou
40、s combustion of goaf coal , etc. and the results of numerical simulation , the reasonable practical scheme is determined and tested.</p><p> After the destressing scheme is applied , the extent of deformati
41、on and damage of the gob-side tailentry’s surrounding rocks obviously decreased. The deformation curves of the gob-side tailentry before and after destressing technology are shown in Fig15. Within the range of 50 m ahead
42、 of the coal face , the roof-to-floor convergence of the gob-side tailentry decreased from 1 300 mm to 386 mmand the convergence between two ribs decreased from 997 mm to515 mm,70.3 % and 48.3 % are respectively cut</
43、p><p> In non-destressed gob-side tailentry , the deformation and damage of the surrounding rocks were still very large and terribly severe even after 3~5 times of rebuilding work. The section of the gob-side
44、tailentry near the coal face was generally less than 4 m2 and somewhere even less than 0.5~2.0 m2 . The maintenance status of the gob-side tailentry was improved greatly by using destressing technology. Because the woode
45、n supports were used and the self-stability capability of the coal body was lo</p><p> Fig.5 Deformation curves of the gob-side tailentry before and after destressing technology</p><p> 1 ———
46、Roof-to-floor convergence before destressing ;</p><p> 2 ———Convergence between two ribs before destressing ;</p><p> 3 ———Convergence between two ribs after destressing ;</p><p>
47、 4 ———Roof-to-floor convergence after destressing</p><p> 5.Conclusions</p><p> (1)To control the deformation of the gob-side entry’s surrounding rocks during the period affected by mining is
48、 the key to ensure the stability of the gob-side entry and safe production of the coal mine. That the gas drain also serves as a destressing entry for the gob-side entry through reforming the roadway layout in a fully me
49、chanized top-coal caving face can achieve remarkable destressing effect</p><p> (2)The destressing zone created by the destressing entry and standing shot can observably reduce the transfer of high stress i
50、nduced by the rotation and subsidence of the key block B to the surrounding rocks of gob-side tailentry and the purpose to reduce the deformation of the gob-side tailentry’s surrounding rocks was achieved.</p><
51、;p> (3)The longer the distance l is , the lower the destressing effect of the gob-side tailentry is. The standing shot width in both coal sides of the destressing entry should be limited within a reasonable range. Th
52、e higher the standing shot intensity is , the better the destressing effect is. The ideal operation procedure of destressing maintenance is as follows.Firstly , a destressing entry is excavated ; secondly , the gob-side
53、tailentry is excavated ; lastly , standing shot is carried out accor</p><p> (4)Successful application of the destressing technology provides a new thinking to maintain the gob-side entry and lay out the ro
54、adways in a fully mechanized top-coal caving face.</p><p> References</p><p> [1] 侯朝炯, 李學華. 綜放沿空掘巷圍巖大、小結(jié)構(gòu)的穩(wěn)定性原理[J].煤炭學報, 2001 , 26 (1) : 1~7.</p><p> Hou Chaojiong , Li Xuehua. S
55、tability principle of big and small structures of rock surrounding roadway driven along goaf in fully mechanized top coal caving face [J ].Journal of China Coal Society , 2001 , 26 (1) : 1~7.</p><p> [2] 李學
56、華. 綜放沿空掘巷圍巖大小結(jié)構(gòu)穩(wěn)定性的研究[D] . 徐州: 中國礦業(yè)大學, 2000.</p><p> Li Xuehua. Study on the stability of big and small structures of rock surrounding roadway driven along goaf in fully mechanized top coal caving face [D]
57、. Xuzhou : China University of Mining and Technology , 2000.</p><p> [3] 陳炎光, 陸士良. 中國煤礦巷道圍巖控制[M].徐州:中國礦業(yè)大學出版社, 1994.</p><p> Chen Yanguang , Lu Shiliang. Strata control around coal mine roadwa
58、ys in China [M] . Xuzhou : Press of China University of Mining</p><p> and Technology , 1994.</p><p> [4] He Fulian,Qu Qundi,Zou Xizheng,etal. Numerical simulation of destressing maintenance f
59、or a tailentry along gob area [A] . 29th International Symposium on Computer Applications in the Minerals Industries [C].20011673~676.</p><p><b> 中文譯文</b></p><p> 綜放沿空掘巷卸壓技術(shù)研究</
60、p><p><b> 瞿群迪</b></p><p> ?。ㄖ袊V業(yè)大學能源學院,徐州,221008)</p><p> 摘要: 針對綜放工作面沿空掘巷巷道的變形特征,作者認為確保沿空掘巷圍巖穩(wěn)定的關(guān)鍵是控制采動影響期間巷道的變形??紤]到綜放面巷道布置的特點,提出了卸壓技術(shù)方案,并且運用離散元3.0 程序(UDEC- 3.0)分析卸壓效果。&l
61、t;/p><p> 關(guān)鍵字:綜采放頂煤,沿空掘巷,巷道布置</p><p> 1 綜放沿空巷道變形特征</p><p> 根據(jù)關(guān)鍵層理論和上覆巖層運動規(guī)律可知,當上區(qū)段工作面推過后,沿其傾斜方向,老頂破斷在下區(qū)段煤柱內(nèi),隨著工作面的不斷往前推進,形成一種穩(wěn)定的結(jié)構(gòu),這個結(jié)構(gòu)被稱為大結(jié)構(gòu)。與此同時,沿傾斜方向的支承壓力峰值向下區(qū)段煤體深處轉(zhuǎn)移,沿空巷道應(yīng)布置在大結(jié)構(gòu)
62、下方的應(yīng)力降低區(qū)域,如圖1所示。圍巖大結(jié)構(gòu)的穩(wěn)定性分析與現(xiàn)場調(diào)查都表明了綜放沿空掘巷與其他類的巷道相比有明顯的區(qū)別。它的主要特征如下所示</p><p> ?。?)巷道開掘期間,綜放沿空巷道與大多數(shù)的軟巖巷道是相似的。巷道開挖對大結(jié)構(gòu)的穩(wěn)定性影響是非常小的。由于受開掘影響,巷道周圍應(yīng)力改變并且產(chǎn)生了應(yīng)力集中,沿空巷道出現(xiàn)了一定的變形值。</p><p> (2)巷道開掘之后和回采影響之前
63、,圍巖大結(jié)構(gòu)是穩(wěn)定的,巷道變形很小。</p><p> ?。?)當沿空巷道受到綜放工作面的采動影響時,老頂再次發(fā)生破壞,原上覆巖層的穩(wěn)定受到破壞。巖塊A與巖塊B處于運動的不穩(wěn)定狀態(tài)。尤其是采動期間沿空巷道產(chǎn)生嚴重變形,變形量是巷道開掘期間的5-6 倍,這是由于關(guān)鍵塊B的旋轉(zhuǎn)下沉造成的。</p><p> 圖1 綜放沿空掘巷與上覆巖層的結(jié)構(gòu)關(guān)系</p><p>
64、 Fig.1 The structure relationship between gob-side entry and overlying strata in a fully mechanized top-coal caving face</p><p> 2 綜放沿空巷道的卸壓機理</p><p> 卸壓巷道布置在巷道周圍巖石中對于減小巷道周圍的應(yīng)力和防止其發(fā)生嚴重的變形和破壞的一
65、種十分有效的技術(shù)方案。國內(nèi),在巷道之上布置卸壓巷道常被大部分煤礦采用以保護一些服務(wù)年限較長的重要硐室。巷道服務(wù)年限相對較短并且開掘一兩條額外的卸壓巷道需要投入大量的資金,同時也影響正常的生產(chǎn),因此,提出了改革綜放巷道的布置的技術(shù)方案來達到卸壓的目的。在綜放工作面內(nèi),用于瓦斯抽放的一條或兩條巷道沿采煤工作面的頂板中部(有時靠近工作面的端部)掘進。針對綜放工作面厚煤層的條件,提出了如下的卸壓方案:其中的一條瓦斯尾巷(也被稱為卸壓巷道)布置在
66、沿空巷道的上部。因此,這條巷道同時達到了瓦斯抽放與卸壓的目的。由上區(qū)段工作面產(chǎn)生的側(cè)支承壓力轉(zhuǎn)移到沿傾斜方向的煤體深部,沿空留巷的圍巖應(yīng)力狀態(tài)得到了很好的改善。</p><p> 采用超前本工作面在卸壓巷道兩幫的煤體內(nèi)松動爆破,目的是在沿空留巷的上部產(chǎn)生足夠?qū)挼男秹簠^(qū)域。卸壓區(qū)域能作為緩沖墊層以吸收和減少由關(guān)鍵塊B旋轉(zhuǎn)下沉所產(chǎn)生的高壓力,因而轉(zhuǎn)移到沿空巷道的應(yīng)力值降低,再次達到了卸壓的效果。最終,在綜放采動影響
67、期間的沿空巷道圍巖的大變形得到顯著的降低,有效控制了綜放沿空留巷圍巖的變形。</p><p> 3 卸壓效果的數(shù)值分析</p><p> 針對卸壓技術(shù)的現(xiàn)場測試條件,運用UDEC3.0程序分析影響卸壓效果的主要因素。新集煤礦的條件如下,煤層厚度7.5 m,傾角12°,普氏系數(shù)為0.7。煤層直接頂為強度較低的泥質(zhì)砂巖,厚度為2.0 m,老頂巖性為石英砂巖,厚8.0 m。沿空巷道
68、埋藏深度位于371-453 m之間,巷道與相鄰采空區(qū)之間保留有2~3 m寬的窄煤柱,采用梯形木棚支護,支架之間的間距分別為3.2m,2.8m,0.5m。</p><p> 3.1卸壓巷道位置對卸壓效果的影響</p><p> 因為沿空巷道與卸壓巷道分別沿煤層的頂?shù)装宀贾?,所以不用考慮兩條巷道之間的垂直距離的改變。沿空巷道與卸壓巷道的布置情況如圖2所示。這樣可以確保沿空巷道頂板的完整性并
69、且避免其與采空區(qū)貫通。</p><p> 假設(shè)L代表卸壓巷道與沿空巷道之間的水平距離,隨著L的增加,沿空巷道的變形量也隨著增加。L取不同的數(shù)值,巷道變形量如圖3 所示。事實上,隨著卸壓巷沿煤層傾斜方向向深部轉(zhuǎn)移,位于沿空巷道之會出現(xiàn)一個穩(wěn)定的煤柱,煤柱寬度繼續(xù)增加,這對沿空巷道圍巖的支承力有明顯的影響,從而導致圍巖應(yīng)力與變形的顯著增加。</p><p> 圖2 現(xiàn)場測試巷道布置平面圖
70、</p><p> 1 ———運輸巷;2———沿空巷;3———卸壓巷;4———瓦斯巷;5———松動爆破區(qū)</p><p> Fig.2 Sectional view of roadway layout of the test site</p><p> 1———Headentry;2———Gob - side tailentry ;3———Destressin
71、g entry ;</p><p> 4———Gas drain;5———Standing shot zone</p><p> 3.2松動爆破寬度與強度對卸壓效果的影響</p><p> 卸壓巷道兩幫每幫松動爆破寬度模擬值分別選3 m,5 m,7 m。計算模擬結(jié)果表明隨著爆破范圍的擴大,沿空巷道頂板應(yīng)力集中也隨著減弱。爆破寬度值的改變對窄煤柱比對實體煤的的應(yīng)
72、力與變形的影響更大。當爆破寬度值從3 m到5 m時,窄煤柱的變形量減少了30%,</p><p> 圖3.l 與沿空巷道變形之間的關(guān)系圖</p><p> 1———兩幫移近量;2———采空區(qū)附近頂?shù)装逡平?3——實體煤附近頂?shù)装逡平?lt;/p><p> Fig.3 Relationship between l and deformation of the
73、gob-side tailentry</p><p> 1 ———Convergence between two ribs;2———Roof-to-floor convergence near the goaf ;</p><p> 3 ———Roof-to-floor convergence near the solid coal</p><p> 但是,當
74、爆破值從5 m到7 m時,窄煤柱的變形量又會增加。結(jié)果表明,如果爆破寬度值超過了某一限定值,沿空巷道之上的頂煤就會失去對關(guān)鍵塊B 的支撐,因此,關(guān)鍵寬B 急劇旋轉(zhuǎn)下沉失去穩(wěn)定性,窄煤柱變形加大,快速被破壞。由此可知,爆破寬度應(yīng)限定在一個合理的范圍之內(nèi)以有效控制沿空巷道與采空區(qū)之間窄煤柱的變形。</p><p> 爆破強度也對卸壓效果有很大的影響。如圖4所示,在卸壓巷道兩幫的爆破范圍內(nèi),爆破效果越好,煤體越破碎,
75、越脆弱。良好的爆破效果能進一步減少來自上覆巖層運動對沿空巷道煤壁與軟弱底板巖層的應(yīng)力轉(zhuǎn)移,改善沿空巷道圍巖的卸壓效果。</p><p> 圖4 不同爆破強度下沿空巷道圍巖的變形圖</p><p> ?。╝)強爆破度 (b)弱爆破度</p><p> Fig.4 Displacement vectors of the gob-side tailentry’s
76、 surrounding rocks in different intensity of standing shot</p><p> (a) Strong standing shot intensity ; (b) Weak standing shot intensity</p><p> 3.3操作工序?qū)π秹盒Ч挠绊?lt;/p><p> 可行的操作工序有以
77、下的三個類型,一、先掘沿空巷道,然后掘進卸壓巷道,最后實施爆破;二、先掘卸壓巷道,然后掘沿空巷道,最后,超前采煤工作面內(nèi)的移動支承壓力實施爆破;三、開始先掘卸壓巷道,然后實施爆破,最后掘進沿空巷道。數(shù)值模擬結(jié)果表明卸壓效果最好的是第二種方式,最差的是第一種方式。第二種方式先掘卸壓巷道,然后沿空巷道周圍的應(yīng)力值急劇降低。這種情況下,掘進沿空巷道,其圍巖的初變形受到限制。最后依據(jù)前支承應(yīng)力的分布來實施爆破。因此,這種工序能降低沿傾斜方向上工
78、作面開采形成的固定支承壓力和走向工作面超前移動支承壓力的疊加值,有效改善了卸壓效果?,F(xiàn)實生產(chǎn)中,卸壓巷道掘進后再掘進沿空巷道,因此,卸壓巷道能充當排水巷道或者輔助運輸巷道。</p><p><b> 4 現(xiàn)場應(yīng)用效果</b></p><p> 考慮到新集煤礦1309綜放工作面的地質(zhì)條件,防止沿空掘巷過程中頂板垮落消除來自于相鄰上區(qū)段采空區(qū)的水的侵入,采礦區(qū)煤層自燃
79、等實際因素以及數(shù)值模擬的結(jié)果,提出了合理的現(xiàn)場方案,并得以檢測。</p><p> 實施卸壓方案之后,沿空巷道圍巖的變形及破壞程度得到明顯降低。卸壓技術(shù)放案實施前后沿空巷道變形曲線如圖5所示。在采煤工作面前方50 m的范圍內(nèi),頂?shù)装迤骄平鼜男秹呵暗?300 mm/d 降到了386 mm/d,降低了70.3 %,兩幫平均移近從卸壓前的997 mm/d 降到了515 mm/d,降低了48.3%。</p>
80、;<p> 圖5 卸壓技術(shù)放案實施前后沿空巷道變形曲線</p><p> 1———變形前頂?shù)装逡平€;2———變形后頂?shù)装逡平€;</p><p> 3———變形后頂?shù)装逡平€;4———變形后頂?shù)装逡平€;</p><p> Fig.5 Deformation curves of the gob-side tailentry befo
81、re and after destressing technology</p><p> 1———Roof-to-floor convergence before destressing ;</p><p> 2———Convergence between two ribs before destressing ;</p><p> 3———Convergen
82、ce between two ribs after destressing ;</p><p> 4———Roof-to-floor convergence after distressing</p><p> 未卸壓沿空巷道修復了3~5次之后,巷道圍巖的變形仍然非常大,破壞十分嚴重??拷擅汗ぷ髅娴难乜障锏赖臄嗝婷娣e一般小于4 m2,一些地方的面積小于0.5~2 m2。運用卸壓技術(shù)后
83、,沿空巷道的維護狀況得到了很大的改善。沿空巷道的維護狀況處在良好的條件下,一些局部的修復工作之后,靠近工作面的巷道面積超過了6 m2。</p><p><b> 5 結(jié)論</b></p><p> ?。?)采動影響期間,確保沿空巷道的穩(wěn)定性和礦井的安全生產(chǎn)關(guān)鍵是控制巷道圍巖的變形。通過改革綜放面巷道的布置,瓦斯抽放巷道也可以充當卸壓巷道,起到了很好的卸壓效果。<
84、;/p><p> ?。?)卸壓巷道產(chǎn)生了一定的卸壓區(qū),松動爆破能顯著的降低由關(guān)鍵塊B旋轉(zhuǎn)下沉所誘發(fā)的高壓力向沿空巷道圍巖的轉(zhuǎn)移,以達到減少沿空巷道圍巖變形的目的。</p><p> ?。?)距離l越長,沿空巷道的卸壓效果越弱。卸壓巷道兩幫松動爆破的寬度應(yīng)限制在合理的范圍內(nèi)。松動爆破的強度越大,卸壓效果越好。卸壓維護合理的操作工序如下,先掘進卸壓巷道,然后沿空掘巷,最后實施爆破。</p&g
85、t;<p> ?。?)卸壓技術(shù)方案現(xiàn)場的成功運用為維護沿空巷道和布置綜放巷道提供了一個新的思路。</p><p><b> 參考文獻</b></p><p> [1] 侯朝炯, 李學華. 綜放沿空掘巷圍巖大、小結(jié)構(gòu)的穩(wěn)定性原理[J].煤炭學報,2001, 26 (1) : 1~7.</p><p> Hou Chaojion
86、g , Li Xuehua. Stability principle of big and small structures of rock surrounding roadway driven along goaf in fully mechanized top coal caving face [J].Journal of China Coal Society, 2001, 26 (1): 1~7.</p><p
87、> [2] 李學華. 綜放沿空掘巷圍巖大小結(jié)構(gòu)穩(wěn)定性的研究[D].徐州:中國礦業(yè)大學,2000.</p><p> Li Xuehua. Study on the stability of big and small structures of rock surrounding roadway driven along goaf in fully mechanized top coal caving f
88、ace [D]. Xuzhou: China University of Mining and Technology, 2000.</p><p> [3] 陳炎光, 陸士良. 中國煤礦巷道圍巖控制[M] . 徐州: 中國礦業(yè)大學出版社,1994.</p><p> Chen Yanguang , Lu Shiliang. Strata control around coal mine
89、 roadways in China [M].Xuzhou:Press of China University of Mining and Technology , 1994.</p><p> [4] He Fulian,Qu Qundi,Zou Xizheng,et al.Numerical simulation of destressing maintenance for a tailentry alon
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 鮑店煤礦綜放沿空掘巷支護技術(shù)研究.pdf
- 采礦專業(yè)英語外文翻譯---綜放開采巷旁充填沿空留巷技術(shù)研究
- 沿空掘巷技術(shù)研究
- 孤島綜放沿空掘巷礦壓顯現(xiàn)規(guī)律及控制.pdf
- 淺析綜放沿空掘巷圍巖結(jié)構(gòu)及其控制
- 許疃煤礦綜放沿空掘巷巷道支護技術(shù)分析
- 沿空掘巷巷旁切頂卸壓技術(shù)及應(yīng)用研究.pdf
- 特厚煤層大采高綜放面沿空掘巷技術(shù)研究.pdf
- 綜放沿空掘巷煤柱留設(shè)數(shù)值模擬研究
- 許疃煤礦綜放沿空掘巷巷道支護技術(shù)分析 .doc
- 金莊礦特厚煤層綜放沿空掘巷圍巖控制技術(shù)研究.pdf
- 綜放沿空掘巷圍巖穩(wěn)定性分析與控制技術(shù)研究.pdf
- 綜放沿空留巷技術(shù)及其應(yīng)用
- 深部綜放沿空掘巷圍巖變形破壞特征與控制技術(shù).pdf
- 綜放沿空留巷技術(shù)及其應(yīng)用
- 深部綜放沿空掘巷圍巖變形破壞特征及控制技術(shù).pdf
- 綜放沿空掘巷圍巖穩(wěn)定性及支護研究.pdf
- 未壓實采空區(qū)沿空掘巷防滅火技術(shù)研究.pdf
- 綜放沿空留巷技術(shù)及其應(yīng)用.doc
- 綜放沿空留巷圍巖應(yīng)力控制及支護技術(shù)研究
評論
0/150
提交評論