版權說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權,請進行舉報或認領
文檔簡介
1、<p> 本科生畢業(yè)設計(論文)外文翻譯</p><p> 畢業(yè)設計(論文)題目:汽車主減速器的對比分析與設計</p><p> 外文題目:AUTOMOTIWE FINAL DRIVE</p><p> 譯文題目:汽車主減速器</p><p> 學 生 姓 名: <
2、;/p><p> 專 業(yè): 車輛工程 </p><p> 指導教師姓名: 金嘉琦 </p><p> 評 閱 日 期: </p><p> AUTOMOTIWE FINAL D
3、RIVE</p><p> FINAL DRIVE</p><p> A final drive is that part of a power transmission system between the drive shaft and the differential. Its function is to change the direction of the
4、power transmitted by the drive shaft through 90 degrees to the driving axles. At the same time. it provides a fixed reduction between the speed of the drive shaft and the axle driving the wheels.</p&
5、gt;<p> The reduction or gear ratio of the final drive is determined by dividing the number of teeth on the ring gear by the number of teeth on the pinion gear. In passenger vehicles, this s
6、peed reduction varies from about 3:1 to 5:1. In trucks it varies from about 5:1 to 11:1. To calculate rear axle ratio, count the number of teeth on each gear. Then divide the number of pinion teeth into the number of
7、ring gear teeth. For example, if the pinion gear has 10 teeth and the ring g</p><p> The higher axle ratio, 4.11:1 for instance, would increase acceleration and pulling power but would decrease
8、 fuel economy. The engine would have to run at a higher rpm to maintain an equal cruising speed. </p><p> The lower axle ratio. 3:1, would reduce acceleration and pulling power but would increa
9、se fuel mileage. The engine would run at a lower rpm while maintaining the same speed. </p><p> The major components of the final drive include the pinion gear, connected to the drive sh
10、aft, and a bevel gear or ring gear that is bolted or riveted to the differential carrier. To maintain accurate and proper alignment and tooth contact, the ring gear and differential assembly are mounted
11、 in bearings. The bevel drive pinion is supported by two tapered roller bearings, mounted in the differential carrier. This pinion shaft is straddle mounted. me</p><p> Spiral Bevel Gear
12、 </p><p> Spiral bevel gears have curved gear teeth with the pinion and ring gear on the same center line. This type of final drive is used extensively in truck and occasionally in older automobiles
13、. This design allows for constant contact between the ring gear and pinion. It also necessitates the use of heavy grade lubricants. </p><p> Hypoid Gear </p><p> The hypoid gear final drive is
14、 an improvement or variation of the spiral bevel design and is commonly used in light and medium trucks and all domestic rear- wheel drive automobiles. Hypoid gears have replaced spiral bevel gears because they lower the
15、 hump in the floor of the vehicle and improve gear-meshing action. As you can see in figure 5-13, the pinion meshes with the ring gear below the center line and is at a slight angle (less than 90 degrees). </p
16、><p> Figure 5-13.—Types of final drives. </p><p> This angle and the use of heavier (larger) teeth permit an increased amount of power to be transmitted while the size of the ring gear an
17、d housing remain constant. The tooth design is similar to the spiral bevel but includes some of the characteristics of the worm gear. This permits the reduced drive angle. The hypoid gear teeth have a more pronounced cur
18、ve and steeper angle, resulting in larger tooth areas and more teeth to be in contact at the same time. With more than one gear tooth in</p><p> Double-Reduction Final Drive </p><p> In the
19、final drives shown in figure 5-13, there is a single fixed gear reduction. This is the only gear reduction in most automobiles and light- and some medium-duty trucks between the drive shaft a
20、nd the wheels.</p><p> Double-reduction final drives are used for heavy- duty trucks. With this arrangement (fig. 5-14) it is not necessary to have a large ring gear to get the necessary gear reduction.
21、The first gear reduction is obtained through a pinion and ring gear as the single fixed gear reduction final drive. Referring to figure 5-14, notice that the secondary pinion is mounted on the primary ring g
22、ear shaft. The second gear reduction is the result of the secondary pinion which is rigidly attach</p><p> Figure 5-14.—Double-reduction final drive</p><p> Two-Speed Final Drive</p>&l
23、t;p> The two-speed or dual-ratio final drive is used to supplement the gearing of the other drive train components and is used in vehicles with a single drive axle (fig. 5-15). The operator can se
24、lect the range or speed of this axle with a button on the shifting lever of the transmission or by a lever through linkage</p><p> The two-speed final drive doubles the number of gear ratios ava
25、ilable for driving the vehicle under various load and road conditions. For example, a vehicle with a two-speed unit and a five-speed transmission, ten different forward speeds a
26、re available. This unit provides a gear ratio high enough to permit pulling a heavy load up steep grades and a low ratio to permit the vehicle to run at high speeds with a light load or no load</p><p
27、> The conventional spiral bevel pinion and ring gear drives the two-speed unit, but a planetary gear train is placed between the differential drive ring gear and the differential case. The internal gear of the
28、 planetary gear train is bolted rigidly to the bevel drive gear. A ring on which the planetary gears are pivoted is bolted to the differential case. A member, consisting of the sun gear and a dog clutch, sl
29、ides on one of the axle shafts and is controlled through </p><p> When in high range, the sun gear meshes with the internal teeth on the ring carrying the planetary gears and disengages the dog
30、 clutch from the left bearing adjusting ring, which is rigidly held in the differential carrier. In this position, the planetary gear train is locked together. There is no relative motion between the differen
31、tial case and the gears in the planetary drive train. The differential case is driven directly by the differential ring gear, the same as in </p><p> When shifted into low range, the sun gear is sli
32、d out of mesh with the ring carrying the planetary gears. The dog clutch makes a rigid connection with the left bearing adjusting ring. Because the sun gear is integral with the dog clutch, it is also locked to
33、the bearing adjusting rings and remains stationary. The internal gear rotates the planetary gears around the stationary sun gear, and the differential case is driven by the ring on which the planetary gears are pi
34、voted. This </p><p> DIFFERENTIAL ACTION</p><p> The rear wheels of a vehicle do not always turn at the same speed. When the vehicle is turning or when tire diameters differ slightly, th
35、e rear wheels must rotate at different speeds. </p><p> If there were a solid connection between each axle and the differential case, the tires would tend to slide, squeal, and wear whenever the ope
36、rator turned the steering wheel of the vehicle. A differential is designed to prevent this problem. </p><p> Driving Straight Ahead</p><p> When a vehicle is driving straight ahead,
37、the ring gear, the differential case, the differential pinion gears, and the differential side gears turn as a unit. The two differential pinion gears do NOT rotate on the pinion shaft, because they exert equal force on
38、the side gears. As a result, the side gears turn at the same speed as the ring gear, causing both rear wheels to turn at the same speed. </p><p> Turning Corners</p><p> When the vehicle be
39、gins to round a curve, the differential pinion gears rotate on the pinion shaft. This occurs because the pinion gears must walk around the slower turning differential side gear. Therefore, the pinion
40、gears carry additional rotary motion to the faster turning outer wheel on the turn..</p><p> Differential speed is considered to be 100 percent. The rotating action of the pinion gears carries
41、 90 percent of this speed to the slowing mover inner wheel and sends 110 percent of the speed to the faster rotating outer wheel. This action allows the vehicle to make the turn without sliding or squealing the wheels.
42、</p><p> Figure 5-15.—Two speed final drive</p><p><b> 汽車主減速器</b></p><p><b> 主減速器</b></p><p> 主減速器是在傳動軸和差速器之間的一個動力傳動系統(tǒng)的組成部分。它的作用是通過90°傳
43、動軸改變傳給驅(qū)動軸的動力傳遞方向。同時,它提供了一個固定的減速,該值介于傳動軸和驅(qū)動輪軸的速度之間。</p><p> 主減速器的減速和齒輪傳動比取決于環(huán)形齒輪齒數(shù)和小齒輪齒數(shù)??蛙嚨臏p速在3:1到5:1之間,卡車是在5:1到11:1之間。計算后軸傳動比要數(shù)每個齒輪上的齒數(shù)。然后把小齒輪的齒數(shù)插入環(huán)形齒輪的齒數(shù)。例如,如果小齒輪有10齒,齒圈有30(30除以10),后軸比率將3:1。生產(chǎn)廠家在安裝后軸傳動比時要
44、考慮到性能和費用之間的協(xié)調(diào)。客車平均的比率是3.50:1</p><p> 更高軸比,例如4。11:1,將增加加速度和動力但會降低燃油經(jīng)濟性。發(fā)動機將不得不突然進攻一個更高轉速保持一個能與之匹敵的速度。</p><p> 較低級軸比如3:1,將減少加速度和拉動力但是將會增加燃油里程。發(fā)動機將突然進攻一個降低轉速而維持同一速度。</p><p> 主減速器的主要
45、元件包括連接到傳動軸上的小齒輪,和一個被啰嗦或是鉚釘固定在差速器殼上的斜齒輪或者是圓柱齒輪。為了保持輪齒之間準確,正確的接觸,齒圈,差動總成被安裝在一定的方位。主動小錐齒輪由二對圓錐滾子軸承支撐,安裝在差速器上。這個小齒輪軸跨式組合安裝。意味著那是一個能被定位在每個小齒輪齒側的軸齒。油封是為了防止?jié)櫥瑒↓X輪軸,軸凸出的部分泄漏</p><p><b> 弧齒錐齒輪</b></p&
46、gt;<p> 具有彎曲的輪齒的弧齒錐齒輪同小齒輪,齒圈在同一中心線。這種主減速器形式被廣闊使用在卡車上,偶爾用在年長的汽車上。這個設計允許環(huán)形齒和小齒輪之間建立不斷地聯(lián)系。它也因此有必要用高等級滑潤劑。</p><p><b> 雙曲面齒輪</b></p><p> 雙曲面齒輪減速器是一個改進或變異的盤旋斜角設計,常用在輕型和中型卡車以及所有國內(nèi)
47、的四輪驅(qū)動汽車上。雙曲面齒輪已經(jīng)取代了弧齒錐齒輪,因為他們降低了汽車底板上的凸起,改善輪齒嚙合行動。正如你看到的在5-13圖中,小齒輪軸線在中心線的下方,在一個輕微角度(少于90°)。</p><p> 這個角度和用的重(大)的輪齒可以保證被傳遞的功率增加同時保持環(huán)形齒的大小和容積不變。這種齒型設計類似盤旋斜角然而包括一些蝸輪的特征。這個保證驅(qū)動器角的減小。雙曲線齒輪輪齒有一個更顯著的彎曲和陡峭的角,
48、導致了在大齒輪輪齒地區(qū)更多的輪齒在同時接觸。在不止一個輪齒在同時接觸的情況下,一個雙曲線設計能夠增加齒輪的壽命和減少齒輪噪音。輪齒的縱向滑動會引起很大的壓力,所以要使用高等級的潤滑油。</p><p><b> 雙級主減速器</b></p><p> 在圖5-13所示的主減速器中,有一個獨立的固定減速齒輪。這個獨一無二的減速齒輪常用在大多數(shù)汽車和輕型和中型卡車的傳
49、動軸和車輪之間。</p><p> 雙極主減速器被用在重型卡車上。有了這種安排(圖:5-14)我們就沒必要用一個大直徑的環(huán)形齒輪來使其獲得必要的齒輪減速。第一級齒輪減速是通過一個小齒輪,齒圈作為單固定齒輪減速來實現(xiàn)的主減速器。提到圖5-14,我們注意到那個次要小齒輪被安裝在主環(huán)形齒輪軸上。第二級齒輪減速是通過被安裝在主環(huán)形齒輪軸上的次要小齒輪驅(qū)動被附屬在差動器里面的一個大的螺旋齒輪實現(xiàn)的。雙級主減速可在軍用汽車
50、上發(fā)現(xiàn),例如5噸卡車上。許多這種尺寸的商用汽車設計使用單級或雙級主減速器同規(guī)定的雙速結合在一起。</p><p><b> 雙速主減速器</b></p><p> 雙速或者是兩傳動比的主減速器常常被用來補充另一個傳動元件的齒輪,常用在單驅(qū)動軸的汽車上。(圖5-15)操作者選擇這個軸的范圍或者是速度可以通過一個按鍵安裝在傳輸?shù)淖兯贄U上或者是一個連鎖的杠桿。</
51、p><p> 雙速減速器擁有兩個齒輪比來驅(qū)動汽車以適用多種多樣的負荷和道路狀況。例如,一輛汽車有一個雙速單元,一個五速傳輸,那么就有十種不同的前進速度可供使用。這個單元提供一個足夠高的齒輪齒數(shù)比來保證拉重負荷徒級行駛,和一個低的比率以允許車輛在輕載或者是空載的情況下以高速來運行。</p><p> 常規(guī)螺旋小傘齒輪,齒圈驅(qū)動雙速單位,但一個行星齒輪系被放置在差速器傳動齒輪和差速器殼之間。內(nèi)
52、齒輪行星齒輪系被用螺絲定在硬性斜角傳動齒輪。有一個環(huán),在這個環(huán)上行星齒輪是回轉的,這個環(huán)被釘在差速器殼上。一個成員,它的組成包括太陽輪 和一個爪形離合器,滑動在其中的一個半軸上,通過一個按鍵或者是連接到操作者那里的杠桿被控制。</p><p> 當在高的范圍,相嚙合的太陽齒輪同在環(huán)上的內(nèi)齒攜帶行星齒輪,從左邊的調(diào)整環(huán)上脫離接觸爪形離合器,這個環(huán)硬性固定在差速器殼上。在這個位置上,星系齒輪系被鎖在一起。在差速器殼
53、和在行星傳動軸里的齒輪之間沒有相對運動。差速器殼由差速器環(huán)齒輪直接驅(qū)動,在常規(guī)的單級主減速器也是同樣的。</p><p> 當在轉換到低的范圍,太陽齒輪從嚙合的狀態(tài)滑離,和環(huán)一起驅(qū)動行星齒輪。爪形離合器和左邊的調(diào)整環(huán)構成了一個剛性連接。因為太陽輪也是爪形離合器的一部分,它業(yè)被鎖在調(diào)整環(huán)上,保持靜止。內(nèi)齒輪使行星齒輪繞著靜止的太陽輪旋轉。差動器殼通過行星齒輪被安裝在樞軸上的環(huán)來驅(qū)動。這個動作將產(chǎn)生齒輪減速或者是低
54、速的軸。</p><p><b> 不同動作</b></p><p> 一輛汽車的后輪不是總是用同一種速度在行駛。當汽車在轉彎或者是當輪胎直徑不同時,汽車的后輪們必須以不同的速度運轉。</p><p> 如果在每個軸和差速器殼之間都有一個固體連接,那么輪胎將傾向于滑動、發(fā)出尖銳的噪聲、以及每當操作者轉動方向盤的時候磨損。一個差速器就被設計
55、用來防止這樣的問題。</p><p><b> 直線行駛</b></p><p> 當汽車在直線行駛是,齒圈,差速器殼,差速器小齒輪和差速器邊緣齒輪像一個單元一樣運轉。兩個差速器小齒輪不在一個小齒輪軸上運轉,因為他們施加相等的力量到變齒輪上。結果,兩半軸齒輪與環(huán)形齒輪同一速度運轉,導致兩個車輪用同一速度運轉。</p><p><b&g
56、t; 轉彎</b></p><p> 當車輛按曲線行駛,差動齒輪旋轉在小齒輪軸。發(fā)生這種情況四因為小齒輪齒輪必須繞這慢轉差速器側齒輪旋轉。因此,在轉彎時,小齒輪會帶動差速器旋轉運動來使外轉向輪運動速度快。</p><p> 差動的速度被認為是百分之百。小齒輪的旋轉運動將會把百分之九十的這個速度帶該運動緩慢的內(nèi)輪,把百分之一百一的速度傳遞給運動較快的外輪。這個動作會使汽車在
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經(jīng)權益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--載貨汽車主減速器
- 外文翻譯--重型卡車主減速器
- 汽車主減速器畢業(yè)設計
- 汽車主減速器畢業(yè)設計
- 載重汽車主減速器及差速器設計
- 輕型車主減速器設計
- 汽車主減速器總成傳動誤差測量研究.pdf
- 汽車主減速器試驗臺的研究.pdf
- 汽車主減速器性能及其檢測方法研究.pdf
- 汽車主減速器參數(shù)優(yōu)化與結構設計
- 汽車主減速器振動信號非線性特征研究.pdf
- 全套設計_載重汽車主減速器及差速器設計
- 汽車主減速器殼體組合夾具設計課程設計
- 汽車主減速器畢業(yè)設計說明書
- 全套設計_載重汽車主減速器及差速器設計
- 汽車主減速器參數(shù)優(yōu)化與結構設計
- 特拉卡2.5l汽車主減速器的優(yōu)化設計
- 全套設計_輕型車主減速器設計
- 汽車主減速器參數(shù)優(yōu)化與結構設計.doc
- 汽車主減速器參數(shù)優(yōu)化軟件設計【帶程序軟件】
評論
0/150
提交評論