版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 外文原文</b></p><p> Ultrasonic ranging system design</p><p> Publication title: Sensor Review. Bradford: 1993. Vol. 13</p><p> ABSTRACT:Ultrasonic ranging
2、technology has wide using worth in many fields,such as the industrial locale,vehicle navigation and sonar engineering.Now it has been used in level measurement,self-guided autonomous vehicles, fieldwork robots automotive
3、 navigation,air and underwater target detection,identification,location and so on.So there is an important practicing meaning to learn the ranging theory and ways deeply. To improve the precision of the ultrasonic rangin
4、g system in hand,satisfy the req</p><p> Keywords:Ultrasound r,Ranging System,Single Chip Processor</p><p> 1.Introductive</p><p> With the development of science and technology,
5、 the improvement of people's standard of living, speeding up the development and construction of the city. urban drainage system have greatly developed their situation is constantly improving. However, due to histori
6、cal reasons many unpredictable factors in the synthesis of her time, the city drainage system. In particular drainage system often lags behind urban construction. Therefore, there are often good building excavation has b
7、een building faci</p><p> 2. A principle of ultrasonic distance measurement </p><p> 2.1 The principle of piezoelectric ultrasonic generator </p><p> Piezoelectric ultrasonic gen
8、erator is the use of piezoelectric crystal resonators to work. Ultrasonic generator, the internal structure as shown, it has two piezoelectric chip and a resonance plate. When it's two plus pulse signal, the frequenc
9、y equal to the intrinsic piezoelectric oscillation frequency chip, the chip will happen piezoelectric resonance, and promote the development of plate vibration resonance, ultrasound is generated. Conversely, if the two a
10、re not inter-electrode voltage, when</p><p> The traditional way to determine the moment of the echo's arrival is based on thresholding the received signal with a fixed reference. The threshold is chose
11、n well above the noise level, whereas the moment of arrival of an echo is defined as the first moment the echo signal surpasses that threshold. The intensity of an echo reflecting from an object strongly depends on the o
12、bject's nature, size and distance from the sensor. Further, the time interval from the echo's starting point to the moment </p><p> 2.2The principle of ultrasonic distance measurement </p>&l
13、t;p> Ultrasonic transmitter in a direction to launch ultrasound, in the moment to launch the beginning of time at the same time, the spread of ultrasound in the air, obstacles on his way to return immediately, the ul
14、trasonic reflected wave received by the receiver immediately stop the clock. Ultrasound in the air as the propagation velocity of 340m / s, according to the timer records the time t, we can calculate the distance between
15、 the launch distance barrier (s), that is: s = 340t / 2 </p><p> 3.Ultrasonic Ranging System for the Second Circuit Design </p><p> System is characterized by single-chip microcomputer to cont
16、rol the use of ultrasonic transmitter and ultrasonic receiver since the launch from time to time, single-chip selection of 8751, economic-to-use, and the chip has 4K of ROM, to facilitate programming. Circuit schematic d
17、iagram shown in Figure 2. </p><p> Figure 1 circuit principle diagram</p><p> 3.1 40 kHz ultrasonic pulse generated with the launch </p><p> Ranging system using the ultrasonic s
18、ensor of piezoelectric ceramic sensors UCM40, its operating voltage of the pulse signal is 40kHz, which by the single-chip implementation of the following procedures to generate. </p><p> puzel: mov 14h, #
19、12h; ultrasonic firing continued 200ms </p><p> here: cpl p1.0; output 40kHz square wave </p><p><b> nop; </b></p><p><b> nop; </b></p><p>&l
20、t;b> nop; </b></p><p> djnz 14h, here; </p><p><b> ret </b></p><p> Ranging in front of single-chip termination circuit P1.0 input port, single chip impleme
21、ntation of the above procedure, the P1.0 port in a 40kHz pulse output signal, after amplification transistor T, the drive to launch the first ultrasonic UCM40T, issued 40kHz ultrasonic pulse, and the continued launch of
22、200ms. Ranging the right and the left side of the circuit, respectively, then input port P1.1 and P1.2, the working principle and circuit in front of the same location. </p><p> 3.2 Reception and processing
23、 of ultrasonic </p><p> Used to receive the first launch of the first pair UCM40R, the ultrasonic pulse modulation signal into an alternating voltage, the op-amp amplification IC1A and after polarization IC
24、1B to IC2. IC2 is locked loop with audio decoder chip LM567, internal voltage-controlled oscillator center frequency of f0 = 1/1.1R8C3, capacitor C4 determine their target bandwidth. R8-conditioning in the launch of the
25、carrier frequency on the LM567 input signal is greater than 25mV, the output from the high jump 8 </p><p> Ranging in front of single-chip termination circuit output port INT0 interrupt the highest priority
26、, right or left location of the output circuit with output gate IC3A access INT1 port single-chip, while single-chip P1.3 and P1. 4 received input IC3A, interrupted by the process to identify the source of inquiry to dea
27、l with, interrupt priority level for the first left right after. Part of the source code is as follows: </p><p> receive1: push psw </p><p><b> push acc </b></p><p>
28、clr ex1; related external interrupt 1 </p><p> jnb p1.1, right; P1.1 pin to 0, ranging from right to interrupt service routine circuit </p><p> jnb p1.2, left; P1.2 pin to 0, to the left rangi
29、ng circuit interrupt service routine </p><p> return: SETB EX1; open external interrupt 1 </p><p><b> pop acc </b></p><p><b> pop psw </b></p>&l
30、t;p><b> reti </b></p><p> right: ...; right location entrance circuit interrupt service routine </p><p> Ajmp Return </p><p> left: ...; left Ranging entrance
31、 circuit interrupt service routine </p><p> Ajmp Return </p><p> 3.3 The calculation of ultrasonic propagation time </p><p> When you start firing at the same time start the sin
32、gle-chip circuitry within the timer T0, the use of timer counting function records the time and the launch of ultrasonic reflected wave received time. When you receive the ultrasonic reflected wave, the receiver circuit
33、outputs a negative jump in the end of INT0 or INT1 interrupt request generates a signal, single-chip microcomputer in response to external interrupt request, the implementation of the external interrupt service subroutin
34、e, read </p><p> RECEIVE0: PUSH PSW </p><p><b> PUSH ACC </b></p><p> CLR EX0; related external interrupt 0 </p><p> MOV R7, TH0; read the time value &l
35、t;/p><p> MOV R6, TL0 </p><p><b> CLR C </b></p><p> MOV A, R6 </p><p> SUBB A, # 0BBH; calculate the time difference </p><p> MOV 31H, A; st
36、orage results </p><p> MOV A, R7 </p><p> SUBB A, # 3CH </p><p> MOV 30H, A </p><p> SETB EX0; open external interrupt 0 </p><p><b> POP ACC <
37、;/b></p><p><b> POP PSW </b></p><p><b> RETI </b></p><p> For a flat target, a distance measurement consists of two phases: a coarse measurement and. a
38、 fine measurement:</p><p> Step 1: Transmission of one pulse train to produce a simple ultrasonic wave.</p><p> Step 2: Changing the gain of both echo amplifiers according to equation , until
39、the echo is detected.</p><p> Step 3: Detection of the amplitudes and zero-crossing times of both echoes.</p><p> Step 4: Setting the gains of both echo amplifiers to normalize the output at,
40、say 3 volts. Setting the period of the next pulses according to the : period of echoes. Setting the time window according to the data of step 2.</p><p> Step 5: Sending two pulse trains to produce an interf
41、ered wave. Testing the zero-crossing times and amplitudes of the echoes. If phase inversion occurs in the echo, determine to otherwise calculate to by interpolation using the amplitudes near the trough. Derive t sub m1 a
42、nd t sub m2 .</p><p> Step 6: Calculation of the distance y using equation .</p><p> 4. The ultrasonic ranging system software design </p><p> Software is divided into two parts,
43、 the main program and interrupt service routine. Completion of the work of the main program is initialized, each sequence of ultrasonic transmitting and receiving control. </p><p> Interrupt service routine
44、s from time to time to complete three of the rotation direction of ultrasonic launch, the main external interrupt service subroutine to read the value of completion time, distance calculation, the results of the output a
45、nd so on. </p><p> 5. Conclusions </p><p> Required measuring range of 30cm ~ 200cm objects inside the plane to do a number of measurements found that the maximum error is 0.5cm, and good repr
46、oducibility. Single-chip design can be seen on the ultrasonic ranging system has a hardware structure is simple, reliable, small features such as measurement error. Therefore, it can be used not only for mobile robot can
47、 be used in other detection systems. </p><p> Thoughts: As for why the receiver do not have the transistor amplifier circuit, because the magnification well, integrated amplifier, but also with automatic ga
48、in control level, magnification to 76dB, the center frequency is 38k to 40k, is exactly resonant ultrasonic sensors frequency</p><p> REFERENCES</p><p> 1. Fox, J.D., Khuri-Yakub, B.T. and Kin
49、o, G.S., "High Frequency Acoustic Wave Measurement in Air", in Proceedings of IEEE 1983 Ultrasonic Symposium, October 31-2 November, 1983, Atlanta, GA, pp. 581-4.</p><p> 2. Martin Abreu, J.M., Ce
50、res, R. and Freire, T., "Ultrasonic Ranging: Envelope Analysis Gives Improved Accuracy", Sensor Review, Vol. 12 No. 1, 1992, pp. 17-21.</p><p> 3. Parrilla, M., Anaya, J.J. and Fritsch, C., "
51、Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Measurements", IEEE Transactions: Instrumentation and Measurement, Vol. 40 No. 4, August 1991, pp. 759-63.</p><p> 4. Canali, C.,
52、 Cicco, G.D., Mortem, B., Prudenziati, M., and Taron, A., "A Temperature Compensated Ultrasonic Sensor Operating in Air for Distance and Proximity Measurement", IEEE Transaction on Industry Electronics, Vol. IE
53、-29 No. 4, 1982, pp. 336-41.</p><p> 5. Martin, J.M., Ceres, R., Calderon, L and Freire, T., "Ultrasonic Ranging Gets Thermal Correction", Sensor Review, Vol. 9 No. 3, 1989, pp. 153-5.</p>
54、<p><b> 外文譯文</b></p><p> 超聲波測(cè)距儀系統(tǒng)設(shè)計(jì)</p><p> 原文出處:傳感器文摘 布拉福德:1993年 第13頁(yè)</p><p> 摘要:超聲測(cè)距技術(shù)在工業(yè)現(xiàn)場(chǎng)、車輛導(dǎo)航、水聲工程等領(lǐng)域都具有廣泛的應(yīng)用價(jià)值,目前已應(yīng)用于物位測(cè)量、機(jī)器人自動(dòng)導(dǎo)航以及空氣中與水下的目標(biāo)探測(cè)、識(shí)別、定位等場(chǎng)合。因此
55、,深入研究超聲的測(cè)距理論和方法具有重要的實(shí)踐意義。為了進(jìn)一步提高測(cè)距的精確度,滿足工程人員對(duì)測(cè)量精度、測(cè)距量程和測(cè)距儀使用的要求,本文研制了一套基于單片機(jī)的便攜式超聲測(cè)距系統(tǒng)。</p><p> 關(guān)鍵詞:超聲波,測(cè)距儀,單片機(jī) </p><p><b> 1、前言</b></p><p> 隨著科技的發(fā)展,人們生活水平的提高,城市發(fā)展建設(shè)
56、加快,城市給排水系統(tǒng)也有較大發(fā)展,其狀況不斷改善。但是,由于歷史原因合成時(shí)間住的許多不可預(yù)見因素,城市給排水系統(tǒng),特別是排水系統(tǒng)往往落后于城市建設(shè)。因此,經(jīng)常出現(xiàn)開挖已經(jīng)建設(shè)好的建筑設(shè)施來(lái)改造排水系統(tǒng)的現(xiàn)象。城市污水給人們帶來(lái)了困擾,因此箱涵的排污疏通對(duì)大城市給排水系統(tǒng)污水處理,人們生活舒適顯得非常重要。而設(shè)計(jì)研制箱涵排水疏通移動(dòng)機(jī)器人的自動(dòng)控制系統(tǒng),保證機(jī)器人在箱涵中自由排污疏通,是箱涵排污疏通機(jī)器人的設(shè)計(jì)研制的核心部分??刂葡到y(tǒng)核心
57、部分就是超聲波測(cè)距儀的研制。因此,設(shè)計(jì)好的超聲波測(cè)距儀就顯得非常重要了。</p><p> 2、超聲波測(cè)距原理 </p><p> 2.1壓電式超聲波發(fā)生器原理</p><p> 壓電式超聲波發(fā)生器實(shí)際上是利用壓電晶體的諧振來(lái)工作的。超聲波發(fā)生器內(nèi)部結(jié)構(gòu),它有兩個(gè)壓電晶片和一個(gè)共振板。當(dāng)它的兩極外加脈沖信號(hào),其頻率等于壓電晶片的固有振蕩頻率時(shí),壓電晶片將會(huì)發(fā)
58、生共振,并帶動(dòng)共振板振動(dòng),便產(chǎn)生超聲波。反之,如果兩電極間未外加電壓,當(dāng)共振板接收到超聲波 時(shí),將壓迫壓電晶片作振動(dòng),將機(jī)械能轉(zhuǎn)換為電信號(hào),這時(shí)它就成為超聲波接收器了。</p><p> 測(cè)量脈沖到達(dá)時(shí)間的傳統(tǒng)方法是以擁有固定參數(shù)的接收信號(hào)開端為基礎(chǔ)的。這個(gè)界限恰恰選于噪音水平之上,然而脈沖到達(dá)時(shí)間被定義為脈沖信號(hào)剛好超過(guò)界限的第一時(shí)刻。一個(gè)物體的脈沖強(qiáng)度很大程度上取決于這個(gè)物體的自然屬性尺寸還有它與傳感器的距
59、離。進(jìn)一步說(shuō),從脈沖起始點(diǎn)到剛好超過(guò)界限之間的時(shí)間段隨著脈沖的強(qiáng)度而改變。結(jié)果,一種錯(cuò)誤便出現(xiàn)了——兩個(gè)擁有不同強(qiáng)度的脈沖在不同時(shí)間超過(guò)界限卻在同一時(shí)間到達(dá)。強(qiáng)度較強(qiáng)的脈沖會(huì)比強(qiáng)度較弱的脈沖超過(guò)界限的時(shí)間早點(diǎn),因此我們會(huì)認(rèn)為強(qiáng)度較強(qiáng)的脈沖屬于較近的物體。</p><p> 2.2超聲波測(cè)距原理</p><p> 超聲波發(fā)射器向某一方向發(fā)射超聲波,在發(fā)射時(shí)刻的同時(shí)開始計(jì)時(shí),超聲波在空氣中
60、傳播,途中碰到障礙物就立即返回來(lái),超聲波接收器收到反射波就立即停止計(jì)時(shí)。超聲波在空氣中的傳播速度為340m/s,根據(jù)計(jì)時(shí)器記錄的時(shí)間t,就可以計(jì)算出發(fā)射點(diǎn)距障礙物的距離(s),即:s=340t/2</p><p><b> 圖1 電路原理圖</b></p><p> 3、超聲波測(cè)距系統(tǒng)的電路設(shè)計(jì)</p><p> 系統(tǒng)的特點(diǎn)是利用單片機(jī)控
61、制超聲波的發(fā)射和對(duì)超聲波自發(fā)射至接收往返時(shí)間的計(jì)時(shí),單片機(jī)選用C51,經(jīng)濟(jì)易用,且片內(nèi)有4K的ROM,便于編程。電路原理圖如圖1所示。</p><p> 3.1 40kHz 脈沖的產(chǎn)生與超聲波發(fā)射</p><p> 測(cè)距系統(tǒng)中的超聲波傳感器采用UCM40的壓電陶瓷傳感器,它的工作電壓是40kHz的脈沖信號(hào),這由單片機(jī)執(zhí)行下面程序來(lái)產(chǎn)生。</p><p> pu
62、zel: mov 14h, #12h;超聲波發(fā)射持續(xù)200ms</p><p> here: cpl p1.0 ; 輸出40kHz方波</p><p><b> nop ;</b></p><p><b> nop ;</b></p><p><b> nop
63、;</b></p><p> djnz 14h,here;</p><p><b> ret</b></p><p> 前方測(cè)距電路的輸入端接單片機(jī)P1.0端口,單片機(jī)執(zhí)行上面的程序后,在P1.0 端口輸出一個(gè)40kHz的脈沖信號(hào),經(jīng)過(guò)三極管T放大,驅(qū)動(dòng)超聲波發(fā)射頭UCM40T,發(fā)出40kHz的脈沖超聲波,且持續(xù)發(fā)射200ms
64、。右側(cè)和左側(cè)測(cè) 距電路的輸入端分別接P1.1和P1.2端口,工作原理與前方測(cè)距電路相同。</p><p> 3.2超聲波的接收與處理</p><p> 接收頭采用與發(fā)射頭配對(duì)的UCM40R,將超聲波調(diào)制脈沖變?yōu)榻蛔冸妷盒盘?hào),經(jīng)運(yùn)算放大器IC1A和IC1B兩極放大后加至IC2。IC2是帶有鎖 定環(huán)的音頻譯碼集成塊LM567,內(nèi)部的壓控振蕩器的中心頻率f0=1/1.1R8C3,電容C4決定
65、其鎖定帶寬。調(diào)節(jié)R8在發(fā)射的載頻上,則LM567 輸入信號(hào)大于25mV,輸出端8腳由高電平躍變?yōu)榈碗娖?,作為中斷?qǐng)求信號(hào),送至單片機(jī)處理.</p><p> 前方測(cè)距電路的輸出端接單片機(jī)INT0端口,中斷優(yōu)先級(jí)最高,左、右測(cè)距電路的輸出通過(guò)與門IC3A的輸出接單片機(jī)INT1端口,同時(shí)單片機(jī)P1.3和P1.4接到IC3A的輸入端,中斷源的識(shí)別由程序查詢來(lái)處理,中斷優(yōu)先級(jí)為先右后左。部分源程序如下:</p&g
66、t;<p> receive1:push psw</p><p><b> push acc</b></p><p> clr ex1; 關(guān)外部中斷1</p><p> jnb p1.1,right;P1.1引腳為0,轉(zhuǎn)至右測(cè)距電路中斷服務(wù)程序</p><p> jnb p
67、1.2,left;P1.2引腳為0,轉(zhuǎn)至左測(cè)距電路中斷服務(wù)程序</p><p> return: SETB EX1; 開外部中斷1</p><p><b> pop acc</b></p><p><b> pop psw</b></p><p><b>
68、reti</b></p><p> right: ... ; 右測(cè)距電路中斷服務(wù)程序入口</p><p> ajmp return</p><p> left: ... ; 左測(cè)距電路中斷服務(wù)程序入口</p><p&g
69、t; ajmp return</p><p> 3.3計(jì)算超聲波傳播時(shí)間</p><p> 在啟動(dòng)發(fā)射電路的同時(shí)啟動(dòng)單片機(jī)內(nèi)部的定時(shí)器T0,利用定時(shí)器的計(jì)數(shù)功能記錄超聲波發(fā)射的時(shí)間和收到反射波的時(shí)間。當(dāng)收到超聲波反射波時(shí),接收電路 輸出端產(chǎn)生一個(gè)負(fù)跳變,在INT0或INT1端產(chǎn)生一個(gè)中斷請(qǐng)求信號(hào),單片機(jī)響應(yīng)外部中斷請(qǐng)求,執(zhí)行外部中斷服務(wù)子程序,讀取時(shí)間差,計(jì)算距離。其部分源程序如下:
70、</p><p> RECEIVE0: PUSH PSW</p><p><b> PUSH ACC</b></p><p> CLR EX0 ; 關(guān)外部中斷0</p><p> MOV R7, TH0 ; 讀取時(shí)間值</p><p> MOV R6,
71、 TL0</p><p><b> CLR C</b></p><p><b> MOV A, R6</b></p><p> SUBB A, #0BBH; 計(jì)算時(shí)間差</p><p> MOV 31H, A ; 存儲(chǔ)結(jié)果</p><p>
72、<b> MOV A, R7</b></p><p> SUBB A, #3CH</p><p> MOV 30H, A</p><p> SETB EX0 ; 開外部中斷0</p><p><b> POP ACC</b></p><p>&l
73、t;b> POP PSW</b></p><p><b> RETI</b></p><p> 對(duì)于一個(gè)平坦的目標(biāo),距離測(cè)量包括兩個(gè)階段:粗糙的測(cè)量和精細(xì)測(cè)量。</p><p> 第一步:脈沖的傳送產(chǎn)生一種簡(jiǎn)單的超聲波。</p><p> 第二步:根據(jù)公式改變回波放大器的獲得量直到回?fù)鼙粰z測(cè)到
74、。</p><p> 第三步:檢測(cè)兩種回波的振幅與過(guò)零時(shí)間。</p><p> 第四步:設(shè)置回波放大器的所得來(lái)規(guī)格輸出,假定是3伏。通過(guò)脈沖的周期設(shè)置下一個(gè)脈沖。根據(jù)第二部的數(shù)據(jù)設(shè)定時(shí)間窗。</p><p> 第五步:發(fā)射兩串脈沖產(chǎn)生干擾波。測(cè)量過(guò)零時(shí)間與回波的振幅。如果逆向發(fā)生在回波中,決定要不通過(guò)在低氣壓插入振幅。</p><p>
75、 第六步:通過(guò)公式計(jì)算距離y。</p><p> 4、超聲波測(cè)距系統(tǒng)的軟件設(shè)計(jì)</p><p> 軟件分為兩部分,主程序和中斷服務(wù)程序。主程序完成初始化工作、各路超聲波發(fā)射和接收順序的控制。定時(shí)中斷服務(wù)子程序完成三方向超聲波的輪流發(fā)射,外部中斷服務(wù)子程序主要完成時(shí)間值的讀取、距離計(jì)算、結(jié)果的輸出等工作。</p><p><b> 5、結(jié)論</
76、b></p><p> 對(duì)所要求測(cè)量范圍30cm~200cm內(nèi)的平面物體做了多次測(cè)量發(fā)現(xiàn),其最大誤差為0.5cm,且重復(fù)性好??梢娀趩纹瑱C(jī)設(shè)計(jì)的超聲波測(cè)距系統(tǒng)具有硬件結(jié)構(gòu)簡(jiǎn)單、工作可靠、測(cè)量誤差小等特點(diǎn)。因此,它不僅可用于移動(dòng)機(jī)器人,還可用在其它檢測(cè)系統(tǒng)中。</p><p> 思考:至于為什么接收不用晶體管做放大電路呢,因?yàn)榉糯蟊稊?shù)搞不好,集成放大電路,還帶自動(dòng)電平增益控制,放
77、大倍數(shù)為76dB,中心頻率是38k到40k,剛好是超聲波傳感器的諧振頻率 。</p><p><b> 參考文獻(xiàn)</b></p><p> 1. Fox, J.D., Khuri-Yakub, B.T. and Kino, G.S., "High Frequency Acoustic Wave Measurement in Air", in P
78、roceedings of IEEE 1983 Ultrasonic Symposium, October 31-2 November, 1983, Atlanta, GA, pp. 581-4.</p><p> 2. Martin Abreu, J.M., Ceres, R. and Freire, T., "Ultrasonic Ranging: Envelope Analysis Gives
79、Improved Accuracy", Sensor Review, Vol. 12 No. 1, 1992, pp. 17-21.</p><p> 3. Parrilla, M., Anaya, J.J. and Fritsch, C., "Digital Signal Processing Techniques for High Accuracy Ultrasonic Range Me
80、asurements", IEEE Transactions: Instrumentation and Measurement, Vol. 40 No. 4, August 1991, pp. 759-63.</p><p> 4. Canali, C., Cicco, G.D., Mortem, B., Prudenziati, M., and Taron, A., "A Temperat
81、ure Compensated Ultrasonic Sensor Operating in Air for Distance and Proximity Measurement", IEEE Transaction on Industry Electronics, Vol. IE-29 No. 4, 1982, pp. 336-41.</p><p> 5. Martin, J.M., Ceres,
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯---超聲波測(cè)距儀
- 外文翻譯超聲波測(cè)距儀
- 超聲波測(cè)距儀外文翻譯
- 外文翻譯超聲波測(cè)距儀
- 超聲波測(cè)距儀外文獻(xiàn)翻譯
- 超聲波測(cè)距儀外文資料翻譯
- 外文資料翻譯---超聲波測(cè)距儀
- 超聲波測(cè)距儀
- 超聲波測(cè)距儀設(shè)計(jì)
- 外文文獻(xiàn)及翻譯--超聲波測(cè)距儀
- 外文文獻(xiàn)及翻譯---超聲波測(cè)距儀
- 超聲波測(cè)距儀畢業(yè)設(shè)計(jì)
- 超聲波測(cè)距儀設(shè)計(jì)開題報(bào)告
- 超聲波測(cè)距儀課程設(shè)計(jì)
- 超聲波測(cè)距儀畢業(yè)設(shè)計(jì)
- 超聲波測(cè)距儀課程設(shè)計(jì)
- 超聲波測(cè)距儀畢業(yè)設(shè)計(jì)
- 畢業(yè)設(shè)計(jì)---超聲波測(cè)距儀設(shè)計(jì)
- 超聲波測(cè)距儀開題報(bào)告
- 超聲波測(cè)距儀開題報(bào)告
評(píng)論
0/150
提交評(píng)論