版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 畢業(yè)論文(設(shè)計(jì))</b></p><p><b> 外文翻譯</b></p><p> 譯文題目:全自動(dòng)生化分析儀常見故障診斷、分析與維修(側(cè)重維修) </p><p> 學(xué)生姓名:劉凱 學(xué) 號(hào):050921044 </p><p>
2、 專 業(yè):生物醫(yī)學(xué)工程 方 向:醫(yī)療器械 </p><p> 指導(dǎo)教師:但漢久 </p><p> 2008年12月24日</p><p> Design and Development of Microcontroller-Based Clinical Chemistr
3、y Analyser for Measurement of Various Blood Biochemistry Parameters</p><p> S. R. Taneja, R. C. Gupta, Jagdish Kumar, K. K. Thariyan, and Sanjeev Verma,</p><p> Journal of Automated Methods &a
4、mp; Management in Chemistry, India</p><p> Clinical chemistry analyser is a high-performance microcontroller-based photometric biochemical analyser to measure various blood biochemical parameters such as bl
5、ood glucose, urea, protein, bilirubin, and so forth, and also to measure and observe enzyme growth occurred while performing the other biochemical tests such as ALT (alkaline amino transferase), amylase, AST (aspartate a
6、mino transferase), and so forth. These tests are of great significance in biochemistry and used for diagnostic purpos</p><p> light source, an optical module, interference filters of various wave lengths, p
7、eltier device for maintaining required temperature of the mixture in flow cell, peristaltic pump for sample aspiration, graphic LCD display for displaying blood parameters, patients test results and kinetic test graph, 4
8、0 columns mini thermal printer, and also 32-key keyboard for executing various functions. The lab tests conducted on the instrument include versatility of the analyzer, flexibility of the software, an</p><p>
9、; 1. INTRODUCTION</p><p> In order to measure the progress of an enzymatic reaction and to measure the total change in the concentration of the reactant/substrate, various techniques [1] such as spectropho
10、tometric, polarometric, amperometric, electrochemical, coulometric, polarography, radiochemical, and fluorescence are available. Instrument developed works on the principle of absorbance transmittance photometry. It is a
11、 highperformance,microcontroller-based, photometric biochemical analyser to measure various blood bio</p><p> the load on clinical laboratories to a great extent by reducing the time taken in the test and m
12、inimizing the involvement of laboratory staff. Instrument developed is classified as semiautomated analyser [2] and has advantages of precision and accuracy. These systems are used in hospitals to test various blood bioc
13、hemical parameters. All primary health centres, community health centres, and district hospitals are the potential users of this machine.</p><p> 2. MATERIALS AND METHODS</p><p> 2.1. The inst
14、rument</p><p> (i) Design principle</p><p> The instrument is designed using the principle of absorbance transmittance photometry. According to Lambert and Beer’</p><p> Figure 1
15、: Schematic of Lambert and Beer’s law.</p><p> Figure 2: Relation between percent transmission and concentration.</p><p> law [3], when monochromatic light is passed through coloured solution,
16、 the intensity of the transmitted light decreases exponentially with the increase in concentration of the absorbing substance. The value of absorption of light energy is dependent on the number of molecules present in ab
17、sorbing material and the thickness of the medium. Thus,intensity of light energy leaving the absorbing substance is used as an indication of concentration of that particular substance.As shown in Figures 1 and </p>
18、<p> It = I0e- kct (1)</p><p> and transmission</p><p> T = It/ I0 = e- kct
19、 (2)</p><p> log e T=- kct (3)</p><p> log e(1/ T) = kct (4)</p>&l
20、t;p> where c is the concentration of absorbing material, t thickness of the light path, and k absorption constant. </p><p> The quantity (-logT) or log(1/T) is termed as extinction E/OD or the absorbanc
21、e:</p><p> A=log(1/T)=log100/(%transmission) (5)</p><p> A = 2- log(%transmission).</p><p> Therefore A = kct.</p><p> If t
22、 is constant, then AαC.</p><p> In this system, the basic requirement is to measure optical density/absorbance and then concentration of the test parameter under run accurately.</p><p> (ii)Mi
23、crocontroller-based hardware</p><p> Figure 3 represents the basic modules of the system; a light source, an optical module, a filter wheel, a quartz cuvette with reaction mixture, a photo detector, and sig
24、nal processing circuitry based on microcontroller. Overall systemdesign is shown in Figure 4. The block diagram can be subdivided into the following major parts:</p><p> (i) the microcontroller and memories
25、,</p><p> (ii) peripherals and interfaces.</p><p> System design is based around 80C31 microcontroller [4] connected through address bus, data bus, and control bus to the 64 kbytes of EPROM 27
26、C512 for monitor and control program, 24 kbytes of RAM with battery backup for temporary data storage, 24-hour results storage capacity, and peripheral I/O devices 8255 s are used for interfacing 32-key keyboard, 12-bit
27、A/D converter, 40 column thermal mini printer, and 30 characters × 8 lines alphanumeric/graphic LCD display. Alphanumeric keyboard contains</p><p> (iii) Peltier-based temperature controller</p>
28、<p> System developed is used to determine both enzyme activity and substrate concentration in biological fluids at different temperatures 25 °C, 30°C, and 37°C by initial rates using fixed time, en
29、d point, and kinetic methods. System allows selecting any required temperature and maintains the temperature of flow cell at that selected temperature because enzymes are relatively fragile substances which have a tenden
30、cy to undergo inactivation or denaturation [1]. So to get the proper enzymatic rate and</p><p> Figure 3: Block diagram of clinical chemistry analyser.</p><p> Figure 4: Microcontroller-based
31、hardware design of clinical chemistry analyser.</p><p> and peltier device are used to provide and maintain the required temperature for the samples in flow cell. Peltier works in both directions for coolin
32、g and heating. This effect is used to control the temperature of the sample.</p><p> (iv) Peristaltic pump/aspiration system</p><p> Port1 of 8031 microcontroller is interfaced with a stepper
33、motor through a driver hardware that drives the roller type of peristaltic pump which generates the required sequence of pulses for the motor driving hardware. The driver hardware enhances the level of voltage for pulse
34、sequences required for the stepper motor. Roller type peristaltic pump used in the system is aspirating the required volume of reagents/samples and for washing the flow cell. This pump can be calibrated to aspirate the r
35、e</p><p> (v) Optical module and filter wheel assembly</p><p> Optical module consists of a light source with reflector, condenser system, collimating objectives, flow cell, filter wheel assem
36、bly, and photodiode. Halogen lamp is used as a light</p><p> Figure 5: Isometric view of filter wheel assembly and Peltier device.</p><p> source. A constant current power supply is used to po
37、wer the lamp to reduce the fluctuations in the light. All optical components have been designed with quartz glass to have good transmission in UV region at 340 nm. Keeping in view the low response of photo detector in UV
38、 (340 nm), all the optical components have been provided with enhanced antireflection coating in the UV region. In the opto-mechanical assembly, special care has been taken in the design so that each component is properl
39、y align</p><p> 2.2. Methods</p><p> (i) Signal processing</p><p> Advances in electronics and microcontroller technology have played a central role in signal processing [5]. Com
40、puters are included in automated analysis for data acquisition and processing of analytical data. Output of photodiode and preamplifier is a voltage which varies directly with the light which is passed through the flow c
41、ell and selected wavelength filter. Preamplifier gain is selected automatically as per the selected test parameter and filter. Output of preamplifier is converted into d</p><p> 2.3. Methods for calculation
42、</p><p> The instrument developed works in four different modes such as concentration (end point), kinetic mode, fixed-time mode, and absorbance mode. For measurement of concentration in different modes, di
43、fferent formulas are used as shown below.</p><p> (1) Concentration (end point)mode:</p><p> Concentration of sample=Abs. Sample×(Conc. of Standard/Abs. of Standard) </p><p>
44、; (6) </p><p><b> Or </b></p><p> Concentration of sample = Abs. Sample × F. (7)</p><p> (2)
45、Kinetic mode:</p><p> Concentration (U/L)=ΔAbs ./ Min×( Conc. of Standard/Abs/min of Standard) </p><p> (8) </p><p> Or
46、 =ΔAbs / Min×F.</p><p> (3) Fixed-time mode:</p><p> Concentration (U/L)=ΔAbs×( Conc. of Standard/Abs/min of Standard) </p><p> (9)
47、 </p><p> Or =ΔAbs×F.</p><p> Figure 6: Flow diagram of system software.</p><p><b> Where</b></p&
48、gt;<p> F = T.V. × 106/(S.V. × Absorptivity × P) (10)</p><p> T.V. is total reaction volume, S.V. is sample volume, P is path length in cm, Abs. is absorban
49、ce, Conc. is concentration, and Min. is minute.</p><p> 2.4. System software</p><p> The layout of the steps followed in the development of the software of the instrument has been provided in
50、the flow chart shown in Figures 6 and 7. On the basis of this flow diagram, system software has been developed using “C” cross compiler [7, 8] for Intel 8031 microcontroller in modular form. System software is menu drive
51、n and user friendly. Many advance features have been incorporated in the software for fast and robust operation. The main program calls the subfunctions and executes them ac</p><p> 3. RESULTS AND DISCUSSIO
52、N</p><p> In this system, the programming, reading, and reporting operations are easy and user friendly. The instrument is provided with a keyboard which facilitates quick change from one function to anothe
53、r and setting of parameters which can be monitored on LCD with both alphanumeric as well as graphics capabilities without going through complex sequential operations. Printer in the system is used for test reports of the
54、 patients. The system was clinically evaluated successfully over 1000 blood samples </p><p> Figure 7: Flow diagram of system software.</p><p> 4. CONCLUSION</p><p> The instrume
55、nt developed is universally useful for small clinical laboratories, big hospitals, and nursing homes for qualitative analysis of blood. The instrument is capable of handling a reasonable amount of workload. The work orga
56、nization of the instrument is most efficient when batches of tests are analyzed together. In this way, a discretionary approach can be achieved without affecting the performance of instrument. End point samples can be gi
57、ven priority at any time during a routine run.Me</p><p> ACKNOWLEDGMENTS</p><p> The authors are deeply grateful to Dr Pawan Kapur, Director,Dr P. K. Jain and Mr P. K. Goel, Scientists of CSIO
58、,Chandigarh, and Dr Jasbinder Kaur, Acting Head, Department of Biochemistry, GMCH-32, Chandigarh, for providing the necessary facilities and help during the progress of work and clinical evaluation of the system. The pro
59、ject was sponsored by the Department of Science and Technology, New Delhi, India.</p><p> REFERENCES</p><p> [1] G. G. Guilbault, Study of Handbook of Enzymatic Methods of Analysis, Marcel Dek
60、ker, New York, NY, USA, 1976.</p><p> [2] R. Haeckel, “General principles for the classification of analysers,”Journal of Automated Methods and Management in Chemistry, vol. 10, no. 4, pp. 164–166, 1988.<
61、;/p><p> [3] D. C. Harris, Quantitative Chemical Analysis, W. H. Freeman & Company, New York, NY, USA, 4th edition, 1995.</p><p> [4] I. S. MacKenzie, The 8051 Microcontroller, Prentice-Hall,
62、 Englewood Cliffs, NJ, USA, 2nd edition, 1995.</p><p> [5] P. A. Bonini, F. Ceriotti, and C. Franzini, “Selectivity and random-access in automatic analysers,” Journal of Automated Methods and Management in
63、Chemistry, vol. 10, no. 4,pp. 167–170, 1988.</p><p> [6] T. W. Schultz, C and the 8051, vol. I: Hardware, Modular Programming& Multitasking, Prentice-Hall, Englewood Cliffs,NJ, USA, 2nd edition, 1998.&l
64、t;/p><p> [7] UserManual 8051 C Complier Programming Guide for Intel’s 8051 Microcontroller Family, IAR SYSTEMS.</p><p> [8] User Manual winIDEATM Version 9.0, Integrated Development Environment,
65、 Software User’s Guide,iSYSTEM.</p><p> [9] P. A. Bonini, E. Callioni, F. Ceriotti, et al., “Multicentre evaluation of the IL densiscan,” Journal of AppliedMathematics and Stochastic Analysis, vol. 8, no. 1
66、, pp. 18–22, 1986.</p><p> [10] “Technical manual of Clinical Chemistry Analyser developed by CSIO,” 2003.</p><p> 設(shè)計(jì)和開發(fā)以微控制器為基礎(chǔ)的測(cè)量不同血液生化參數(shù)的微控制器化學(xué)分析儀</p><p> S. R. Taneja, R. C.
67、Gupta, Jagdish Kumar, K. K. Thariyan, and Sanjeev Verma, Journal of Automated Methods & Management in Chemistry, 印度</p><p> 臨床化學(xué)分析儀是一種高性能,以微控制器為基礎(chǔ)的生化分析儀,測(cè)量各種血液生化指標(biāo),如血糖,尿素,蛋白質(zhì),膽紅素,等等,而且要衡量和觀察酶增長(zhǎng)時(shí)發(fā)生的其他生
68、化檢驗(yàn)如轉(zhuǎn)氨酶(堿性氨基酸轉(zhuǎn)移酶) ,淀粉酶,轉(zhuǎn)氨酶(天門冬氨酸氨基轉(zhuǎn)移酶) ,等等. 這些試驗(yàn)具有重要的生物化學(xué)意義和用于診斷、分類各種疾病,如糖尿病,肝臟正常,腎臟疾病,等等. 作者在此文介紹了一種廉價(jià)的臨床化學(xué)分析儀的研制. 它一個(gè)開放系統(tǒng),其中任何市場(chǎng)上的試劑盒可以被使用.該系統(tǒng)的以吸收透射光度法為基礎(chǔ),基于80C31單片機(jī)的RAM , EPROM和外設(shè)接口設(shè)備,采用光源,光學(xué)模塊,干擾過濾器的各種波長(zhǎng),致冷設(shè)備維護(hù)所需的溫度,
69、在流動(dòng)細(xì)胞混合,蠕動(dòng)泵樣品愿望,平面液晶顯示器顯示血液指標(biāo),病人的測(cè)試結(jié)果和動(dòng)力學(xué)測(cè)試圖, 40列微型熱敏打印機(jī),也32鍵鍵盤以執(zhí)行各項(xiàng)職能。</p><p> 該實(shí)驗(yàn)室進(jìn)行測(cè)試的工具包括多功能的分析,靈活的軟件和處理的樣品。該原型測(cè)試和評(píng)估了1000血樣成功17血液參數(shù)。評(píng)估工作是在政府的醫(yī)學(xué)院和醫(yī)院,生物化學(xué)系。試驗(yàn)結(jié)果被認(rèn)為是可與其他標(biāo)準(zhǔn)的文書。</p><p><b>
70、 1. 導(dǎo)言</b></p><p> 為了衡量進(jìn)展的酶促反應(yīng),并衡量總濃度變化的反應(yīng)/基板,各種技術(shù)[1],如分光,偏振,安培,電化學(xué),庫侖,極譜法,放射化學(xué)和熒光可用。儀器研制工作的原則吸光度透射光度法. 這是一個(gè)高性能,微控制器為基礎(chǔ)的,光度生化分析儀測(cè)量各種血液生化指標(biāo),如血糖,尿素,蛋白質(zhì),膽紅素,等等,而且要衡量和觀察酶增長(zhǎng)表演時(shí)發(fā)生的其他生化檢驗(yàn),如轉(zhuǎn)氨酶(堿性氨基酸轉(zhuǎn)移酶) ,淀粉
71、酶,轉(zhuǎn)氨酶(天門冬氨酸氨基轉(zhuǎn)移酶) ,等等。生化檢驗(yàn)是非常重要的,因?yàn)樗鼈兣c各種障礙和疾病,如糖尿病,腎臟疾病,肝臟發(fā)生故障,以及其他代謝失常 。這些參數(shù)的量化有助于疾病的分類,并在適當(dāng)?shù)那闆r下,結(jié)果是用于診斷. </p><p> 近年來,由于臨床化學(xué)自動(dòng)化的發(fā)展與變化,工具已經(jīng)自動(dòng)化。自動(dòng)化臨床文書帶來了一場(chǎng)醫(yī)療儀器領(lǐng)域的革命。它已減少臨床實(shí)驗(yàn)室上的負(fù)載,在很大的程度上減少了時(shí)間,并盡量減少參與的實(shí)驗(yàn)室工作
72、人員。儀器開發(fā)被列為半自動(dòng)儀儀器[ 2 ] ,具有精密度和準(zhǔn)確度。這些系統(tǒng)可用于醫(yī)院,以測(cè)試各種血液生化指標(biāo)。所有初級(jí)保健中心,社區(qū)保健中心,和區(qū) 級(jí)醫(yī)院都可以使用本機(jī)。</p><p> 2 .材料和方法2.1 .儀器(i)設(shè)計(jì)原則該儀器的設(shè)計(jì)原則是吸收透射光度法。據(jù)朗伯-比爾定律[ 3 ] ,當(dāng)單色光是通有色溶液時(shí),透射光強(qiáng)度隨溶液濃度的增加質(zhì)而降低。吸收光與物質(zhì)濃度和厚度有光。因此,一定強(qiáng)度的入射
73、光通過有色溶液,由透射光可以說明物質(zhì)的濃度,如圖1和圖2所示:</p><p> 圖1: Lambert and Beer’s定律.示意圖</p><p> 圖2: 透光率與濃度的關(guān)系</p><p> 然后根據(jù)此法: It = I0e- kct
74、 (1)</p><p><b> 變換為</b></p><p> T = It/ I0 = e- kct (2)</p><p> log e T=- kct
75、 (3)</p><p> log e(1/ T) = kct (4)</p><p> 其中c是溶液濃度,T是光路通過溶液的厚度,K的吸收常數(shù)。(- logT)或(1 / t)為稱為E/OD吸光度:</p>&
76、lt;p> A=log(1/T)=log100/(%transmission) (5)</p><p> A = 2- log(%transmission).</p><p> 因此, A = kct.</p><p> 如果 t是常數(shù),那么AαC.</p>
77、<p> 在這一系統(tǒng)中,基本的要求是衡量光密度/吸收,然后準(zhǔn)確濃度下運(yùn)行測(cè)試參數(shù)。 (ii)基于微控制器的硬件 圖3是基本的系統(tǒng)模塊由光源,光學(xué)模塊,一個(gè)過濾器方向盤,石英試管與反應(yīng)混合物,照片探測(cè)器和基于單片機(jī)信號(hào)處理電路。整個(gè)系統(tǒng)設(shè)計(jì)如圖4所示。框圖可細(xì)分為以下幾個(gè)主要部分組成: (i)微控制器和存儲(chǔ)器(ii)外設(shè)和接口 系統(tǒng)設(shè)計(jì)是基于80C31單片機(jī)[ 4 ],通過連接地址總線,數(shù)據(jù)總線和控制總線的64千
78、字節(jié)的EPROM 27C512的監(jiān)測(cè)和控制程序, 24字節(jié)的RAM的備用電池的臨時(shí)數(shù)據(jù)存儲(chǔ), 24小時(shí)的結(jié)果存儲(chǔ)容量和外設(shè) ,I / O設(shè)備8255秒用于接口的32鍵鍵盤, 12位A / D轉(zhuǎn)換器, 40個(gè)欄熱微型打印機(jī), 30個(gè)字符× 8行字母/圖形液晶顯示屏。鍵盤包含各種功能鍵,數(shù)字鍵和復(fù)位鍵選擇各種功能的系統(tǒng)和參數(shù)設(shè)置,液晶用于顯示日期和時(shí)間,各種菜單,參數(shù),從鍵盤輸入的數(shù)據(jù),以及病人的結(jié)果和一些動(dòng)力學(xué)圖所要求的測(cè)試參數(shù)
79、。 12位A / D轉(zhuǎn)換器將模擬信號(hào)的光檢測(cè)器及前置放大器裝換為數(shù)字形式。 40柱熱微型打印機(jī)用于硬盤副本參數(shù)存儲(chǔ),病人的測(cè)試結(jié)果,收集報(bào)告和動(dòng)力學(xué)圖表顯</p><p> 系統(tǒng)開發(fā)是用來判斷兩個(gè)酶活性和底物濃度,在生物流體在不同溫度25 ℃ , 30 ° C和37 ° C的初始利率,采用固定的時(shí)間,終點(diǎn),和動(dòng)力學(xué)方法。系統(tǒng)可以選擇任何所需的溫度和溫度保持細(xì)胞的流動(dòng)在選定的溫度,因?yàn)槊甘窍鄬?duì)
80、脆弱的物質(zhì),有失活或變性[ 1 ] 的傾向。因此,要得到適當(dāng)酶解率和提高他們的穩(wěn)定,必須經(jīng)過妥善處理,同時(shí)進(jìn)行測(cè)試并且必須保持在所需溫度。溫度傳感器LM355 和致冷設(shè)備是用來為流動(dòng)樣品細(xì)胞提供和維護(hù)所需的溫度??梢岳鋮s和加熱。這是用來控制溫度的范例。</p><p> 圖 3: 生化分析儀框圖</p><p> 圖 4: 微控制器為基礎(chǔ)臨床化學(xué)分析儀的硬件設(shè)計(jì)</p>
81、<p> (iv)蠕動(dòng)泵/吸系統(tǒng)</p><p> Port1是8031微控制器接口與步進(jìn)電機(jī)驅(qū)動(dòng)器,通過一個(gè)硬件驅(qū)動(dòng)輥型蠕動(dòng)泵,產(chǎn)生所需的脈沖序列的電機(jī)驅(qū)動(dòng)的硬件。驅(qū)動(dòng)器硬件水平提高步進(jìn)電機(jī)的需要電壓脈沖序列。輥型蠕動(dòng)泵中使用的除塵系統(tǒng)所需的貨量試劑/樣品及洗滌。這種泵可校準(zhǔn)抽吸所需數(shù)量的水,試劑和樣品。 (v)光學(xué)模塊和過濾器盤裝配光模塊由光源反射器,冷凝器系統(tǒng),直目標(biāo),流動(dòng)細(xì)胞,篩選車輪裝
82、配和光電二極管。鹵素?zé)糇鳛楣庠?。恒定電流電源供?yīng)器是用來作為燈電源,以減少波動(dòng)的光。所有光學(xué)元件與石</p><p> 圖 5: 等距輪篩選裝置和致冷設(shè)備</p><p> 英玻璃具有良好的紫外區(qū)340納米波長(zhǎng)光的的傳輸。同時(shí)考慮到在紫外線( 340納米)光檢測(cè)器低反應(yīng),所有的光學(xué)元件提供了在紫外線區(qū)域的增透膜。在光學(xué)機(jī)械裝配,采取特殊的設(shè)計(jì),使每一個(gè)組成部分適當(dāng)?shù)呐浜瞎廨S。要獲得所需
83、波長(zhǎng)的光通過, 6干擾過濾器的過濾不同波長(zhǎng),如340納米, 405納米, 505納米, 546納米, 578納米和630納米,從紫外區(qū),以可見光區(qū)光譜( 300nm的700納米) ,已安裝在過濾器方向盤上。這些過濾器會(huì)自動(dòng)選擇不同的測(cè)試狀態(tài)。當(dāng)過濾器選擇所需的波長(zhǎng),相應(yīng)的增益也自動(dòng)選擇。該過濾器裝置是由步進(jìn)機(jī)驅(qū)動(dòng),這是微控制器控制驅(qū)動(dòng)電路。脈沖的產(chǎn)生需要按照順序輪流在電機(jī)所需的角度,使過濾器前面的光檢測(cè)器。圖5是過濾器裝置裝配圖。<
84、;/p><p><b> 2.2. 檢測(cè)方法</b></p><p><b> (i) 信號(hào)處理</b></p><p> 信號(hào)處理在電子新進(jìn)展和微控制器技術(shù)中都發(fā)揮了核心作用,[5]. 計(jì)算機(jī)被用來自動(dòng)分析數(shù)據(jù)采集與處理分析數(shù)據(jù). 流動(dòng)細(xì)胞電壓變化由光電二極管和放大器是和某些波長(zhǎng)濾波器輸出. 放大器增益按選定的測(cè)試參數(shù)
85、和過濾器自動(dòng)調(diào)整。輸出放大器由12位模數(shù)轉(zhuǎn)換器轉(zhuǎn)換成數(shù)字。單片機(jī)根據(jù)適當(dāng)?shù)挠?jì)算算法計(jì)算這些數(shù)字值 [6].</p><p><b> 2.3. 算法</b></p><p> 該儀器研制工程有四個(gè)不同的模式,如濃度(終點(diǎn)) ,動(dòng)力學(xué)模式,固定時(shí)間模式,和吸收模式。不同的濃度測(cè)量模式,用不同的公式來表示。</p><p> (1) 濃度(終
86、點(diǎn))模式:</p><p> Concentration of sample=Abs. Sample×(Conc. of Standard/Abs. of Standard) </p><p><b> (6)</b></p><p><b> 或 </b></p><p>
87、; Concentration of sample= Abs. Sample ×F. (7)</p><p> (2) 動(dòng)力學(xué)模式:</p><p> Concentration (U/L)=ΔAbs ./ Min×( Conc. of Standard/Abs/min of Standard) </p>
88、<p> ?。?) </p><p> 或 =ΔAbs / Min×F.</p><p> (3) 固定時(shí)間模式:</p><p> Concentration (U/L)=ΔAbs×(
89、 Conc. of Standard/Abs/min of Standard) </p><p> ?。?) </p><p> 或 =ΔAbs×F.</p><p> 圖 6:軟件系統(tǒng)流程圖<
90、/p><p> F = T.V. × 106/(S.V. × Absorptivity × P) (10)</p><p> T.V. 表示總反應(yīng)體積S.V.表示樣本量, P 表示 路徑長(zhǎng)度(cm), Abs. 表示吸光度, Conc. 表示濃度, and Min. 表示最小值。</p><p>
91、 2.4. 系統(tǒng)軟件 </p><p> 軟件工具的發(fā)展,遵循了如圖6,7所示的布局. 以此流程圖為基礎(chǔ),系統(tǒng)軟件已經(jīng)開發(fā)使用以Intel 8031微處理器為單元形式“ C ”交叉編譯器[ 7 , 8 ]。系統(tǒng)軟件是由客戶在菜單上操作 軟件中有許多高級(jí)功能,并能快速,穩(wěn)定的運(yùn)行. 主程序調(diào)用并執(zhí)行相應(yīng)的子程序. 系統(tǒng)軟件是儲(chǔ)存在系統(tǒng)存儲(chǔ)器中。</p><p><b> 3.
92、結(jié)果和討論</b></p><p> 在著個(gè)系統(tǒng)中,他節(jié)目,閱讀,和報(bào)告用戶很容易操作. 該儀器提供了便利的改變參數(shù)設(shè)置的快捷鍵,可監(jiān)測(cè)液晶屏上字母以及圖形處理,而不必通過復(fù)雜的操作.系統(tǒng)中的是用于打應(yīng)印病人的測(cè)試報(bào)告. T這個(gè)系統(tǒng),在生物化學(xué)系GovernmentMedical學(xué)院及醫(yī)院,部門- 32 ,昌迪加爾成功的臨床評(píng)價(jià)超過1000的血液樣本。 17日血液指標(biāo)進(jìn)行了分析,結(jié)果被是令人滿意的.
93、</p><p> Figure 7: Flow diagram of system software</p><p><b> 4. 結(jié)論</b></p><p> 該儀器在發(fā)達(dá)國家普遍用于小型臨床實(shí)驗(yàn)室,大醫(yī)院和療養(yǎng)院的定性血液分析. 該儀器能夠處理一個(gè)適當(dāng)?shù)墓ぷ髁?。最有效的工作是批次的試?yàn)樣品是一起分析. 通過這種方式,可以實(shí)現(xiàn)在不
94、影響性能的工作方式. 終點(diǎn)樣品可優(yōu)先考慮在任何時(shí)候在例行運(yùn)行. 菜單驅(qū)動(dòng)的系統(tǒng)軟件提供了一個(gè)友好的環(huán)境,有許多吸引人的特點(diǎn),便于操作的培訓(xùn),運(yùn)營商要求最低。這一系統(tǒng)的這項(xiàng)技術(shù)已轉(zhuǎn)入印度[10].</p><p><b> 致謝</b></p><p> 作者非常感謝帕卡普爾博士、主任,昌迪加爾CSIO的科學(xué)家PK Jain博士和PK戈埃爾,昌迪加爾生物化學(xué)系GMC
95、H - 32代理團(tuán)長(zhǎng)Jasbinder考爾博士提供必要的設(shè)施和工作中的幫助以及臨床評(píng)價(jià)。該項(xiàng)目是由科學(xué)技術(shù)部資助,印度新德里</p><p><b> 參考文獻(xiàn):</b></p><p> [1] G. G. Guilbault, Study of Handbook of Enzymatic Methods of Analysis, Marcel Dekker,
96、New York, NY, USA, 1976.</p><p> [2] R. Haeckel, “General principles for the classification of analysers,”Journal of Automated Methods and Management in Chemistry, vol. 10, no. 4, pp. 164–166, 1988.</p&g
97、t;<p> [3] D. C. Harris, Quantitative Chemical Analysis, W. H. Freeman & Company, New York, NY, USA, 4th edition, 1995.</p><p> [4] I. S. MacKenzie, The 8051 Microcontroller, Prentice-Hall, Engl
98、ewood Cliffs, NJ, USA, 2nd edition, 1995.</p><p> [5] P. A. Bonini, F. Ceriotti, and C. Franzini, “Selectivity and random-access in automatic analysers,” Journal of Automated Methods and Management in Chemi
99、stry, vol. 10, no. 4,pp. 167–170, 1988.</p><p> [6] T. W. Schultz, C and the 8051, vol. I: Hardware, Modular Programming& Multitasking, Prentice-Hall, Englewood Cliffs,NJ, USA, 2nd edition, 1998.</p&
100、gt;<p> [7] UserManual 8051 C Complier Programming Guide for Intel’s 8051 Microcontroller Family, IAR SYSTEMS.</p><p> [8] User Manual winIDEATM Version 9.0, Integrated Development Environment, Soft
101、ware User’s Guide,iSYSTEM.</p><p> [9] P. A. Bonini, E. Callioni, F. Ceriotti, et al., “Multicentre evaluation of the IL densiscan,” Journal of AppliedMathematics and Stochastic Analysis, vol. 8, no. 1, pp.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 生物醫(yī)學(xué)工程外文翻譯
- 生物醫(yī)學(xué)工程
- 生物醫(yī)學(xué)工程導(dǎo)論
- 生物醫(yī)學(xué)工程相關(guān)試題
- 生物醫(yī)學(xué)工程專業(yè)介紹
- 生物醫(yī)學(xué)工程-考研幫
- 生物醫(yī)學(xué)工程進(jìn)展題庫
- 生物醫(yī)學(xué)工程專業(yè)英語及翻譯
- 生物醫(yī)學(xué)工程對(duì)醫(yī)學(xué)發(fā)展影響
- 生物醫(yī)學(xué)工程大類培養(yǎng)方案
- 生物醫(yī)學(xué)工程專業(yè)培養(yǎng)方案
- [雙語翻譯]--生物醫(yī)學(xué)工程外文翻譯--使用生物組織阻抗傅里葉分析
- [雙語翻譯]--生物醫(yī)學(xué)工程外文翻譯--使用生物組織阻抗傅里葉分析(英文)
- 醫(yī)院中的生物醫(yī)學(xué)工程-臨床工程
- [雙語翻譯]--生物醫(yī)學(xué)工程外文翻譯--使用生物組織阻抗傅里葉分析(譯文)
- 2014生物醫(yī)學(xué)工程基礎(chǔ)
- 2010年--生物醫(yī)學(xué)工程外文翻譯--使用生物組織阻抗傅里葉分析
- 生物醫(yī)學(xué)工程做個(gè)懂醫(yī)學(xué)的工程師
- 生物醫(yī)學(xué)工程專業(yè)本科培養(yǎng)計(jì)劃
- 考研生物醫(yī)學(xué)工程 做個(gè)懂醫(yī)學(xué)的工程師
評(píng)論
0/150
提交評(píng)論