版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 附錄</b></p><p><b> 附錄1</b></p><p><b> 英文原文</b></p><p> High-Performance Automotive Engine Control in Engine Tester</p><
2、;p> Michitaka Hori (Member IEEE) Masahiko Suzuki (Member IEEJ)</p><p> Masakatsu Nomurawember IEEE) Masayuki Terashimamember IEEE)</p><p> Meidensha Corporation</p><p><b&g
3、t; Abstract</b></p><p> This paper presents a novel decoupling control method on the engine torque control for the </p><p> automotive engine tester. The engine tester is mainly compose
4、d of a dynamometer control system and an engine control system. The conventional engine tester has the problem that the performance of the engine torque control system is deteriorated by the influences of the interferenc
5、e between the dynamometer speed control system and the engine torque control system. The authors proposed the practical engine torque control system based on an observer and an identification system to eliminate the inf&
6、lt;/p><p> I . Introduction</p><p> Recently, environmental protection is one of the most important problems in the world, and the exhaust gas from automobiles is also strictly regulated by law.
7、Under such circumstances, the performance of automotive engines is improving year by year, and engine testers, which are used to measure engine characteristics, are required to have high control ability. However, in the
8、conventional torque control of engines, dynamometer torque or shaft torque is applied as a feedback variable instead of e</p><p> II . Configuration of Engine Tester and Test method</p><p> A.
9、 Configuration of Conventional Engine Tester</p><p> Fig.1 shows a configuration of a conventional engine tester. The engine tester consists of an engine to be tested, a dynamometer, and an actuator that re
10、gulates the throttle valve. In this system, the engine torque is controlled by regulating the position of the throttle valve that is connected to the actuator by a wire. Detected variables are the dynamometer torque and
11、speed, and the actuator position. The engine controller is composed of 12-bit AID , D/A converters and a DSP(TMS320C25) .</p><p> B. Engine Test Method</p><p> The engine is tested for its per
12、formance on each driving mode shown in Table 1. The Engine speed or torque is maintained to the predetermined pattern, while the exhaust gas and fuel cost are measured. The engine performance is evaluated based on the re
13、sult of measurements.</p><p> Fig.2 shows the block diagram of the control system of the driving mode 1 shown in Table 1. The engine torque can be detected directly using by the indicated mean effective pre
14、ssure in theory. However, in practice, it is difficult to detect the engine torque directly because of its structure. In the conventional engine testing, the dynamometer torque is applied as a feedback variable instead o
15、f the engine torque as shown in Fig.2. The engine torque control system is affected by the acceleration </p><p> Ill. Decoupling Control Method</p><p> A. Engine Torque Estimation Method</p
16、><p> The engine tester is equivalent to a two-mass model of a dynamometer and an engine. We attempted to estimate the engine torque by the use of a reduced order observer. The state-space representation for a
17、 two-mass-model shown in Fig.3 is as follows, where the viscosity term is neglected.</p><p> The estimated variables are the engine torque, the engine speed, and the shaft torque. The reduced order observer
18、 equations are given below. </p><p> where,is for the estimated state vectors. Value L is the gain matrix of the reduced order observer. We located the triple poles of the observer at s=-wg[rad/s] and refer
19、 to the dynamic and static characteristics of engine torque estimated by the reduced order observer.</p><p> B. Effect of Modeling Error in Engine Torque Estimation</p><p> Analysis was carrie
20、d out to investigate the effect of a parameter error in a two-mass model system upon observer's estimation response. A transfer function from the engine torque to the estimated engine torque is defined to examine the
21、 effect of parameter error on condition that the dynamometer speed command is kept constant. Equation (5) expresses the estimated torque by indicating model Parameters of two-mass system with , assuming the truth values
22、to be .</p><p> The effect of parameter error upon the estimation response is given the second term in the right side of equation (5). An effect upon the estimation response was investigated through simulat
23、ions, when errors are presented in truth values and model values of engine inertia moment and shaft spring coefficient.</p><p> Fig.4(a) and (b) show the step response of estimated torque for real engine to
24、rque when parameters mj ,m shown the relationship between a model value and a truth value were arbitrarily changed. Fig5 (a) and (b) show frequency characteristic of equation (5). Table 2 shows values of parameters used
25、for simulations. When the two-mass system model is identical with the truth value, the response of estimated engine torque becomes a three order system, having triple roots of response frequency wg . It</p><p&
26、gt; C. Parameter Identification in Two-Mass System</p><p> The transfer function in two-mass system from the dynamometer torque to the dynamometer speed is given equation (6). Fig.6 shows the frequency cha
27、racteristic of transfer function given by equation (6). The two-mass system can be regarded as a one-mass system in a low-frequency, and as a resonance system in a high-frequency domain. Utilizing this distinctive nature
28、, the engine inertia moment is identified in a range of frequencies far lower than the antiresonance frequency(w1) and the shaft sprin</p><p> C-I. Identification Method</p><p> I) Engine Iner
29、tia Moment Identification</p><p> Fig.7 shows the identification method of inertia moment of one-mass system in a range of frequencies far lower than the antiresonance frequency. Engine torque is always kep
30、t at zero during identification. Identification of inertia moment of one-mass system is effected by inputting a low frequency sine wave (identification signal) in dynamometer torque command and by adjusting the model ine
31、rtia moment of one-mass system, so that dserence becomes zero between dynamometer speed and the speed of one</p><p> The model inertia is regulated by equation (8) so that the DC component mj(t) becomes to
32、zero.</p><p> In the simulation, a DC component is detected through a three-order low-pass filter instead of the integration shown in equation (7). The dynamometer inertia moment is generally known and so t
33、he engine inertia moment can be identified.</p><p> 2). Shaft Spring Coefficient Identification</p><p> Identification of shaft spring coefficient can be effected by adjusting the model shaft
34、spring coefficient (Km) so that the deviation becomes zero between the shaft helix angle() detected by the use of a disturbance observer and the shaft helix angle ()estimated by use of model shaft spring coefficient. Fig
35、3 shows the block diagram of the identification method of the shaft spring coefficient. The shaft helix angle () is given by equation (9) based on the engine inertia moment identification valu</p><p> The e
36、stimated shaft helix angle () is-given by equation (10), using the estimated shaft torque (TP) and the model shaft spring coefficient (Km).</p><p> When a sine wave as an identification signal is entered in
37、 dynamometer torque command , deviation q(t) between the shaft helix angle() and the estimated shaft helix angle () derives from the difference between the model shaft spring coefficient and the truth value. Equation (11
38、) gives a DC component V(t) in shaft helix angle difference based on difference between the model shaft spring coefficient and a truth shaft spring coefficient by the use of the signal that has a shift in phase against
39、th</p><p> Frequency of the identification signal involves the following restrictions: </p><p> The shaft spring coefficient is identified by the regulation method below so that the DC compone
40、nt V(t) becomes to zero.</p><p> In the simulation, the DC component is detected through a three-order low-pass filter.</p><p> C-2. Simulation Results of Identification Method</p><
41、p> The identification method for the engine inertia moment and the shaft spring coefficient were verified and confirmed by simulation. Identification simulation was curried out under the condition that the initial va
42、lue of an inertia moment model of engine was set at 1.5 times of the truth value. Fig. 9 shows the result of simulation for the identification of an inertia moment of one-mass system. Fig.10 shows the result of simulatio
43、n for shaft spring coefficient identification when the initial valu</p><p> D. Experiment Results of Engine Torque Estimation</p><p> Firstly, the evaluation method of the engine torque observ
44、er is explained as follows. Many literature presented that automotive engines have complicated dynamic characteristics. Equation (13) shows the relationship between the engine torque(TE) and the boost pressure() .</p&
45、gt;<p> where , : deviation from equilibrium value</p><p> subscript 0 : equilibrium value ,</p><p> sup erscript * :value normalized by equilibrium value</p><p> The eng
46、ine torque is directly proportional to the boost pressure with a time delay as shown in equation (13), but a proportional coefficient varies with the engine speed. We curried out experiments using by the 1800[cc],4-cylin
47、der and 4-cycleY gasoline engine in the same condition. The relationship between the engine torque and the boost pressure was confirmed by experiments. The deviation of dynamometer torque was measured in the static condi
48、tion that the boost was changed from 40% to 70% at a </p><p> In the experiment, we estimated the engine torque by the use of the observer. The observer was operated by a DSP. The response frequency of the
49、observer is designed to be wg=50[rad/s]. Values of parameters used for experiments are shown in Table 2. Fig.l2(a) shows the response result under the condition that the engine speed is changed from 2000[rpm] to 1500[rpm
50、] at a constant acceleration by the speed control of the dynamometer while the engine torque is not controlled and the throttle valve an</p><p> IV. Decoupling Torque Control and Experimental Result</p&g
51、t;<p> A. Decoupling Torque Control Method</p><p> We propose the decoupling engine torque control system shown in Fig.13. The proposed control system is the practical method that the estimated engi
52、ne torque is fed back to the control system with identification system.</p><p> B. Experimental Results of Decoupling Torque Control Method</p><p> The effect of the decoupling engine torque c
53、ontrol is confirmed in experiments. We compared the proposed control method with the conventional one. Fig.14 shows the experimental results in the case with the dynamometer torque is applied a the feedback variable and
54、the estimated engine torque is applied. The dynamometer speed changes from 2000[rpm] to 1800[rpm] with a ramp function under a constant torque reference(10%), and the PI controller of an engine torque is designed to have
55、 a the response </p><p> V . Conclusion</p><p> This paper presents a novel decoupling control method on the engine torque control for the automotive engine tester. The conventional engine tes
56、ter has the problem that the performance of engine torque control system is deteriorated by the influences of the interference between the dynamometer speed control system and the engine torque control system. The author
57、s proposed the practical engine torque control system based on an observer and an identification system to eliminate the inference of dy</p><p><b> 中文翻譯</b></p><p> 高性能全自動(dòng)電動(dòng)機(jī)控制試驗(yàn)&l
58、t;/p><p> Michitaka Hori (Member IEEE) Masahiko Suzuki (Member IEEJ)</p><p> Masakatsu Nomurawember IEEE) Masayuki Terashimamember IEEE)</p><p> Meidensha Corporation</p><
59、;p><b> 摘要</b></p><p> 這篇論文介紹了一種全自動(dòng)電機(jī)測(cè)試實(shí)驗(yàn)的新奇控制方法. 這個(gè)實(shí)驗(yàn)主要有一個(gè)功率控制系統(tǒng)和電機(jī)控制系統(tǒng)組成。由于功率速度控制系統(tǒng)和電機(jī)轉(zhuǎn)矩控制系統(tǒng)相互干擾將會(huì)影響這個(gè)便利的電機(jī)測(cè)試系統(tǒng)的測(cè)試。所以作者建議實(shí)際扭矩控制系統(tǒng)操作時(shí),由觀察器來識(shí)別來刪除功率速度控制系統(tǒng)的干擾。我們通過分析觀察到的電機(jī)扭矩估測(cè)響應(yīng)值參數(shù)誤差,通過這個(gè)結(jié)果的分析,
60、建議一個(gè)實(shí)用性的方法來確定電機(jī)的慣性轉(zhuǎn)矩和軸的彈性系數(shù)這些需要觀察的變量。作者肯定的是那個(gè)提出的解偶電機(jī)轉(zhuǎn)矩控制系統(tǒng)和功率測(cè)速控制系統(tǒng)之間干擾的方法通過實(shí)驗(yàn)和仿真實(shí)現(xiàn)了一個(gè)合理的控制系統(tǒng)。</p><p><b> I. 介紹</b></p><p> 目前環(huán)境保護(hù)是一個(gè)全世界都關(guān)注的問題,連從汽車排出的尾氣都有嚴(yán)格的法律規(guī)定。在這種情形下,汽車發(fā)動(dòng)機(jī)一年一年的在
61、改進(jìn),隨之電機(jī)性能的測(cè)試也需要進(jìn)一步提高。但是在傳統(tǒng)的扭矩控制中,因?yàn)殡姍C(jī)的構(gòu)造使得電機(jī)扭矩不能被直接檢測(cè),所以只能用功率轉(zhuǎn)矩法和軸的轉(zhuǎn)矩來代替。結(jié)果就是在轉(zhuǎn)矩控制和轉(zhuǎn)速控制間存在一個(gè)耦合的關(guān)系。因?yàn)檫@個(gè)原因,所以對(duì)于傳統(tǒng)的系統(tǒng)就很難獲得一個(gè)高性能的控制。 作者提議通過檢測(cè)人員和識(shí)別系統(tǒng)來測(cè)定電機(jī)轉(zhuǎn)矩,從而排除功率轉(zhuǎn)速控制系統(tǒng)的干擾。我們通過分析觀察到的電機(jī)扭矩估測(cè)響應(yīng)值參數(shù)誤差,通過這個(gè)結(jié)果的分析,建議用一個(gè)實(shí)用性的方法來確定電機(jī)的慣
62、性矩和軸的彈性系數(shù)這些需要觀察的變量。我們肯定的是解偶電機(jī)轉(zhuǎn)矩控制系統(tǒng)和功率測(cè)速控制系統(tǒng)之間干擾的方法通過實(shí)驗(yàn)和仿真實(shí)現(xiàn)了一個(gè)合理的控制系統(tǒng)。</p><p> II. 電機(jī)構(gòu)造和測(cè)試方法</p><p> A.傳統(tǒng)的電機(jī)測(cè)試結(jié)構(gòu) </p><p> 圖1描述了傳統(tǒng)電機(jī)測(cè)試系統(tǒng)的結(jié)構(gòu)。電機(jī)測(cè)試由一個(gè)待測(cè)電機(jī)和一個(gè)能調(diào)節(jié)氣閥活門的傳動(dòng)裝置。在這個(gè)系統(tǒng)中,氣閥活門
63、和傳動(dòng)裝置通過電纜相連,通過調(diào)整活門的位置來控制電機(jī)的轉(zhuǎn)矩。需要測(cè)量的變量是轉(zhuǎn)矩、轉(zhuǎn)速和傳動(dòng)裝置的位置。電機(jī)控制裝置是由12位的D/A,A/D和DSP(TMS320C25)組成。</p><p><b> B.電機(jī)測(cè)試方法</b></p><p> 在表1描述了在每個(gè)驅(qū)動(dòng)模式下的測(cè)試中的表現(xiàn)。電機(jī)的轉(zhuǎn)速和轉(zhuǎn)矩保持在先前已經(jīng)設(shè)定模式,而排氣和油料花費(fèi)是測(cè)量的。電機(jī)的
64、測(cè)量表現(xiàn)是在測(cè)量結(jié)果的基礎(chǔ)上進(jìn)行評(píng)價(jià)的。</p><p> 圖2描述了在表1模式1中控制系統(tǒng)的框架程序圖。在理論上通過指示平均壓力可以直接測(cè)試電機(jī)的轉(zhuǎn)矩。但是實(shí)際上因?yàn)殡姍C(jī)的構(gòu)造很難直接測(cè)試電機(jī)的轉(zhuǎn)矩。在傳統(tǒng)的電機(jī)測(cè)試中,用測(cè)功轉(zhuǎn)矩作為回饋?zhàn)儊硖娲姍C(jī)轉(zhuǎn)矩,像圖2中顯示的那樣。電機(jī)轉(zhuǎn)矩控制系統(tǒng)在瞬時(shí)狀態(tài)下受到測(cè)功計(jì)加速轉(zhuǎn)矩的影響。結(jié)果就使得電機(jī)轉(zhuǎn)矩控制系統(tǒng)的性能受到惡化。在電機(jī)轉(zhuǎn)矩控制過程中,我們應(yīng)用一個(gè)觀測(cè)者
65、來排除功率轉(zhuǎn)速控制系統(tǒng)帶來的干擾。</p><p> Ill. 解偶控制方法</p><p><b> 電機(jī)轉(zhuǎn)矩的判斷方法</b></p><p> 電極測(cè)試器與功率計(jì)和電機(jī)這二個(gè)集合模型是等效的。我們嘗試著減少命令觀察器判斷電機(jī)扭矩。Fig.3描述了狀態(tài)空間表示法的二個(gè)集合模型,其中摩擦項(xiàng)是被忽略的。</p><p&
66、gt; 需要判斷測(cè)量的變量是電機(jī)的轉(zhuǎn)矩,電機(jī)轉(zhuǎn)速和軸轉(zhuǎn)矩。在減少觀測(cè)器的條件下等式方程如下:</p><p> 這里,目的是為了判定狀態(tài)矢量。值L是在減少觀察器而獲得的矩陣。我們?cè)跁r(shí)找到了觀察的三電極和在減少命令觀察器的前提下涉及到靜態(tài)動(dòng)態(tài)特征的扭矩。</p><p> 在電機(jī)轉(zhuǎn)矩判定中模型誤差的影響</p><p> 分析被用來核查觀察器在兩集合模型參數(shù)誤
67、差判定反映的結(jié)果。從電機(jī)轉(zhuǎn)矩到判定電機(jī)轉(zhuǎn)矩的傳遞函數(shù),在功率計(jì)轉(zhuǎn)速指令保持恒定的條件下,被定義成檢查參量誤差錯(cuò)誤的結(jié)果。通過在雙集合系統(tǒng)模型參數(shù),等式(5)表達(dá)估計(jì)的扭矩值。從而計(jì)算出真實(shí)的。</p><p> 參數(shù)誤差的結(jié)果逼近了在等式(5)右邊給出的判定響應(yīng)值。當(dāng)誤差錯(cuò)誤出現(xiàn)在真實(shí)值和電機(jī)慣性時(shí)刻,軸彈性系數(shù)時(shí),結(jié)果通過仿真的核實(shí)將逼近判定響應(yīng)值。</p><p> (a) and
68、 (b) 描述了估計(jì)轉(zhuǎn)矩值對(duì)于真實(shí)電機(jī)轉(zhuǎn)矩的階越響應(yīng),其中參數(shù)描述了模型值與真實(shí)值之間的關(guān)系,它們是可以任意改變的。圖5(a)(b)描述了等式(5)的頻率特征。表格(2)描述了進(jìn)行仿真后的參數(shù)值。當(dāng)兩級(jí)和系統(tǒng)模型與真實(shí)值相同時(shí),估計(jì)電機(jī)轉(zhuǎn)矩的響應(yīng)值將成為一個(gè)三規(guī)則系統(tǒng),一個(gè)具有相應(yīng)頻率是WG三重根的系統(tǒng)。當(dāng)模型參數(shù)和真實(shí)值出現(xiàn)誤差錯(cuò)誤時(shí),這個(gè)系統(tǒng)也能通過在測(cè)功轉(zhuǎn)速控制系統(tǒng)和兩集合系統(tǒng)的相應(yīng)值確定電機(jī)估測(cè)值是否被影響。根據(jù)這個(gè)分析的結(jié)果,
69、一個(gè)實(shí)際確定的方法被用來測(cè)試電機(jī)瞬時(shí)力矩和軸彈性系數(shù)。</p><p> 在兩集合系統(tǒng)的變量參數(shù)識(shí)別 </p><p> 等式(6)給出了從測(cè)功轉(zhuǎn)矩到測(cè)功轉(zhuǎn)速的傳遞矩陣。圖(6)描述了等式(6)給出的傳遞矩陣的頻率特征。兩集合系統(tǒng)在低頻時(shí)可以看作一個(gè)單系統(tǒng),在高頻范圍中可以一個(gè)共振系統(tǒng)。利用這個(gè)優(yōu)越的特性,在遠(yuǎn)低于返共振頻率w1的一定范圍內(nèi),電機(jī)瞬時(shí)力矩將可以被確定,在高頻范圍內(nèi),軸轉(zhuǎn)
70、矩彈性系數(shù)也可以被確定。</p><p><b> C-I. 確定方法</b></p><p> 1) 電機(jī)瞬時(shí)力矩確定 </p><p> 圖(7)描述了在遠(yuǎn)低于返共振頻率范圍內(nèi),單個(gè)系統(tǒng)瞬時(shí)力矩的確定方法。在確定期間,電機(jī)轉(zhuǎn)矩經(jīng)常被保持在0。如果在測(cè)功轉(zhuǎn)矩命令輸入一個(gè)低頻正弦波信號(hào)(已確定的信號(hào))和在單系統(tǒng)中調(diào)整模型瞬時(shí)力矩將會(huì)影響單
71、系統(tǒng)的瞬時(shí)力矩的確定方法,所以在測(cè)功轉(zhuǎn)速和單系統(tǒng)模型轉(zhuǎn)速中的差別會(huì)是0。等式(7)給出了dc參數(shù)在轉(zhuǎn)速上的差別,而這個(gè)差別是基于模型瞬時(shí)力矩和真實(shí)瞬時(shí)力矩兩者之間的差別,通過使用信號(hào)和相移/2相對(duì)于確定的信號(hào)。</p><p> 通過等式(8)來調(diào)整模型的瞬時(shí)力矩,以得到DC參數(shù)變量成為零。 </p><p> 在仿真中,通過三次序低通道濾波來代替在等式(7)中的積分就可以確定DC的參
72、數(shù)變量。通常的電機(jī)瞬時(shí)力矩是已知的所以電機(jī)瞬時(shí)力矩能被確定。</p><p> 2). 軸彈性系數(shù)確定</p><p> 調(diào)整模型軸彈性系數(shù)(km)能影響軸彈性系數(shù)的確定,所以導(dǎo)致了通過干擾觀察器而得到的軸螺旋角()和通過模型軸彈性系數(shù)估計(jì)得到的軸螺旋角()之間的偏差為零。圖(3)描述了軸彈性系數(shù)確定方法的方框圖。基于電機(jī)瞬時(shí)力矩確定量()和通過干擾觀察器而估計(jì)的軸轉(zhuǎn)矩(),等式(9)
73、給出了軸螺旋角()</p><p> 通過估測(cè)軸轉(zhuǎn)矩和模型軸彈性系數(shù)(Km),等式(10)就給出了估計(jì)量軸螺旋角()</p><p> 當(dāng)一個(gè)正弦波作為一個(gè)已知確定的信號(hào)加入到測(cè)功轉(zhuǎn)矩命令中, 軸螺旋角()和估計(jì)量軸螺旋角()之間的偏差是來源于模型軸彈性系數(shù)與真實(shí)值之間的差異。. 基于模型軸彈性系數(shù)和通過相對(duì)于已確定信號(hào)相移的信號(hào)而得到的真實(shí)軸彈性系數(shù)之間的差異,等式(11)給出了在軸
74、螺旋角差異情況下的dc參數(shù)變量v(t). </p><p> 已確定信號(hào)頻率包含了以下的限制:</p><p> 通過以下調(diào)整方法而確定的軸彈性系數(shù),使得dc參數(shù)變量v(t)將變?yōu)?。</p><p> 在仿真中,通過一個(gè)三次序低通道過濾器來觀測(cè)dc參數(shù)變量。</p><p> C-2. 已確定方法的仿真結(jié)果</p>&
75、lt;p> 通過仿真確定和核實(shí)了對(duì)于電機(jī)瞬時(shí)力矩和軸彈性系數(shù)的確定方法是可行的。在電機(jī)的瞬時(shí)力矩模型設(shè)置在鎮(zhèn)時(shí)值1.5倍這樣的條件下,確定的仿真過程就可以執(zhí)行了。圖(9)描述了對(duì)于一個(gè)單系統(tǒng)慣性力矩確定方法的仿真結(jié)果。圖(10)描述了在軸彈性系數(shù)模型的初始值被設(shè)置在鎮(zhèn)時(shí)值1.5倍時(shí)的仿真結(jié)果。通過制造內(nèi)部參數(shù)變量來協(xié)調(diào)基于識(shí)別判斷的結(jié)果的觀察器,這樣就能確定一個(gè)穩(wěn)定的電機(jī)轉(zhuǎn)矩測(cè)試。表2描述了用于仿真的參數(shù)變量的值。</p&
76、gt;<p> D. 電機(jī)轉(zhuǎn)矩估計(jì)判斷的實(shí)驗(yàn)結(jié)果</p><p> 首先,電機(jī)轉(zhuǎn)矩觀察器的估計(jì)方法由以下來解釋。很多已經(jīng)發(fā)表的關(guān)于汽車的電機(jī)論文文獻(xiàn)都已經(jīng)說明電機(jī)有復(fù)雜動(dòng)態(tài)的結(jié)構(gòu)。等式(13)描述了電機(jī)轉(zhuǎn)矩和增壓壓力之間的關(guān)系()。</p><p> 這里:,:與平均值的偏差</p><p><b> 下標(biāo)0 :平均值</b&g
77、t;</p><p> 上標(biāo) * :通過平均值來標(biāo)準(zhǔn)化</p><p> 電機(jī)轉(zhuǎn)矩與增壓壓力在延時(shí)的基礎(chǔ)上是直接的比例關(guān)系,如等式(13)描述的那樣,但是合理的比例系數(shù)是隨著電機(jī)轉(zhuǎn)速而改變的。在同樣的條件下,我們使用1800(cc)的4缸4循環(huán)的電動(dòng)機(jī)和汽油電動(dòng)機(jī)來開展我們的實(shí)驗(yàn)。電機(jī)轉(zhuǎn)矩和增壓壓力之間的關(guān)系被實(shí)驗(yàn)更好的證明了。在靜態(tài)條件下,測(cè)功轉(zhuǎn)矩的偏差是可以測(cè)量的,變化范圍在一個(gè)恒
78、定轉(zhuǎn)速下從40% 到70%之間。在靜態(tài)條件下,測(cè)功轉(zhuǎn)矩與電機(jī)轉(zhuǎn)矩是相等的。圖(11)描述了與電機(jī)轉(zhuǎn)速之間的關(guān)系。這個(gè)實(shí)驗(yàn)的結(jié)果,證明了在接下來的判定試驗(yàn)條件下,電機(jī)轉(zhuǎn)矩與增壓壓力有直接的比例關(guān)系。倘若沒有傳感器和內(nèi)燃機(jī)條件下的汽油引擎,我們事實(shí)上就不能使用增壓壓力。但是,如果我們以觀察器判斷估測(cè)的電機(jī)轉(zhuǎn)矩為目的的話,那么我們就可以測(cè)量增壓壓力。</p><p> 在實(shí)驗(yàn)中,通過觀察器的觀察我們來判斷估計(jì)電機(jī)轉(zhuǎn)矩
79、。觀測(cè)器是通過dsp來操作的。觀測(cè)器的響應(yīng)頻率設(shè)計(jì)在。表2種描述了在實(shí)驗(yàn)中使用的參數(shù)變量的值。當(dāng)沒有控制電機(jī)轉(zhuǎn)矩和節(jié)流閥體的角度保持在一個(gè)恒定值20%的時(shí)候,就可以使用測(cè)功計(jì)控制轉(zhuǎn)速以一個(gè)恒定的加速度從2000rpm到1500rpm,在這樣的條件下圖(12)描述了響應(yīng)的結(jié)果。電機(jī)轉(zhuǎn)矩的偏差與增壓壓力有直接的比例關(guān)系,在上文中已經(jīng)有所提及。在測(cè)功計(jì)附加電機(jī)轉(zhuǎn)矩的轉(zhuǎn)速控制中,測(cè)功轉(zhuǎn)矩含有一個(gè)2%加速轉(zhuǎn)矩 。在固定轉(zhuǎn)速2000rpm,參考位置
80、幅度調(diào)整范圍20%,同時(shí)電機(jī)轉(zhuǎn)矩沒有控制的條件下,圖(12)描述了響應(yīng)結(jié)果。在這個(gè)實(shí)驗(yàn)中估測(cè)的電機(jī)轉(zhuǎn)矩與電機(jī)增壓有直接的比例關(guān)系。測(cè)功轉(zhuǎn)矩與估測(cè)的電機(jī)轉(zhuǎn)矩在過渡過程中是不相等的,因?yàn)榧铀俎D(zhuǎn)矩附加在電機(jī)轉(zhuǎn)矩上了。我們可以通過減少階數(shù)觀測(cè)器來確定電機(jī)轉(zhuǎn)矩,同時(shí)不會(huì)受到測(cè)功轉(zhuǎn)速控制系統(tǒng)的任何干擾。</p><p> IV. 解耦轉(zhuǎn)矩控制核試驗(yàn)結(jié)果 </p><p> A. 解偶轉(zhuǎn)矩控制方法&
81、lt;/p><p> 我們提出了解耦電機(jī)轉(zhuǎn)矩控制系統(tǒng),如圖13所示。對(duì)于估測(cè)轉(zhuǎn)矩回饋給一個(gè)已定義的控制系統(tǒng)來說,這個(gè)提出的控制方法是一個(gè)很實(shí)用的方法。</p><p> B. 解控制方法的實(shí)驗(yàn)結(jié)果</p><p> 在實(shí)驗(yàn)中解耦控制方法的結(jié)果已經(jīng)在實(shí)驗(yàn)中被證實(shí)了。我們用傳統(tǒng)的方法和這個(gè)新提出的方法來做比較,當(dāng)測(cè)功轉(zhuǎn)矩被用來回饋?zhàn)兞亢凸罍y(cè)電機(jī)轉(zhuǎn)矩被運(yùn)用時(shí),圖14給出
82、了試驗(yàn)的結(jié)果。在參考量10%的固定轉(zhuǎn)矩和一個(gè)有大約2%的pi控制器響應(yīng)頻率這樣的條件下,測(cè)功轉(zhuǎn)速以一個(gè)斜坡函數(shù)的方式從2000rpm到1800rpm變化。因?yàn)榧铀俎D(zhuǎn)矩的變化,所以將以2%的固定轉(zhuǎn)矩來影響測(cè)功轉(zhuǎn)矩。而對(duì)于估測(cè)轉(zhuǎn)矩,它的影響能力則小于1%。我們可以使用觀測(cè)起來肯定證實(shí)解耦電機(jī)轉(zhuǎn)矩控制。表格2秒數(shù)了在實(shí)驗(yàn)中用到的參數(shù)變量的值。</p><p><b> V. 結(jié)論</b><
83、/p><p> 這篇論文證實(shí)了對(duì)于自動(dòng)電機(jī)測(cè)試的轉(zhuǎn)矩控制的一個(gè)新的解耦控制方法。測(cè)功轉(zhuǎn)速控制系統(tǒng)和電機(jī)轉(zhuǎn)矩控制系統(tǒng)之間的影響沖突將會(huì)干擾電機(jī)轉(zhuǎn)矩控制系統(tǒng)的性能,這就是傳統(tǒng)的電機(jī)測(cè)試的缺點(diǎn)。而作者提出的這個(gè)新穎的使用的控制方法,是基于一個(gè)觀測(cè)器和一個(gè)已定義的系統(tǒng)來估測(cè)得到測(cè)功轉(zhuǎn)速控制系統(tǒng)的結(jié)論。觀測(cè)器參數(shù)變量在電機(jī)轉(zhuǎn)矩估測(cè)響應(yīng)上的誤差是可以分析的。通過這個(gè)結(jié)果的分析,一個(gè)使用可行的方法就可以確定電機(jī)瞬時(shí)力矩和軸彈性系
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--高性能全自動(dòng)電動(dòng)機(jī)控制試驗(yàn)
- 外文翻譯--高性能全自動(dòng)電動(dòng)機(jī)控制試驗(yàn)
- 外文翻譯--高性能全自動(dòng)電動(dòng)機(jī)控制試驗(yàn)
- 外文翻譯--高性能全自動(dòng)電動(dòng)機(jī)控制試驗(yàn).doc
- 外文翻譯--高性能全自動(dòng)電動(dòng)機(jī)控制試驗(yàn)(英文)
- 外文翻譯--高性能全自動(dòng)電動(dòng)機(jī)控制試驗(yàn).doc
- 外文翻譯--高性能全自動(dòng)電動(dòng)機(jī)控制試驗(yàn)(英文).pdf
- 外文翻譯--高性能全自動(dòng)電動(dòng)機(jī)控制試驗(yàn)(英文).pdf
- 文獻(xiàn)翻譯-電動(dòng)機(jī)控制
- 高性能異步電動(dòng)機(jī)控制策略的研究.pdf
- 自動(dòng)化畢業(yè)論文--開關(guān)磁阻電動(dòng)機(jī)高性能控制系統(tǒng)的設(shè)計(jì)
- 開關(guān)磁阻電動(dòng)機(jī)高性能控制系統(tǒng)的研究.pdf
- 外文翻譯---電動(dòng)機(jī)的結(jié)構(gòu)特點(diǎn)
- 外文翻譯---直流電動(dòng)機(jī)調(diào)速控制
- 外文翻譯--電動(dòng)機(jī)和數(shù)控技術(shù)
- 外文翻譯--電動(dòng)機(jī)和數(shù)控技術(shù)
- 14屆自動(dòng)化畢業(yè)論文開關(guān)磁阻電動(dòng)機(jī)高性能控制系統(tǒng)的設(shè)計(jì)
- 外文翻譯--利用高頻注入技術(shù)實(shí)現(xiàn)高性能內(nèi)置式無傳感永磁同步電動(dòng)機(jī)控制系統(tǒng)
- 外文翻譯--利用高頻注入技術(shù)實(shí)現(xiàn)高性能內(nèi)置式無傳感永磁同步電動(dòng)機(jī)控制系統(tǒng)
- 外文翻譯--異步電動(dòng)機(jī)軟啟動(dòng)與轉(zhuǎn)矩控制
評(píng)論
0/150
提交評(píng)論