版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p><b> 中文2064字</b></p><p> Research on Fuzzy Control for Steam Generator Water Level </p><p> I . INTRODUCTION <
2、;/p><p> The steam generator is one of the main devices in PWR nuclear power plant, in order to ensure the safety&
3、#160;of nuclear power plant during operation; the steam generator?s water level must be controlled in a certain range. When t
4、he nuclear power plant is running, as the steam flow or the water flow changing, the amount of boiling bubbles in t
5、he steam generator will change due to local pressure or temperature change, the instantaneous water level showed “false water
6、;level” phenomenon . The existence </p><p> II. DYNAMIC CHARACTERISTICS OF STEAM GENERATOR </p><p> The transfer function
7、;of PWR steam generator’s mathematical model of the general form shows below: </p><p> y(s)=GW(s)QW(s)+GS(s)QS(s)
8、 (1) </p><p> where y is the steam generator water level; QW for the water flow; QS for the steam
9、60;flow; GW (s) for the impact of the water flow to the steam generator water level; GS (s) for the effect of
10、the steam flow (load) to the steam generator water level. The balance of the steam generator water level is maintained
11、through the match between the water flow and steam flow. The process that water level changes with the steam flow or
12、0;water flow changing can be regarded as a simple integration process, but</p><p> A. Dynamics Characteristics under Water Flo
13、w Disturbance Suppose steam flow GS remains unchanged, and water flow GW step increases, on the one hand because the t
14、emperature of feed water is much lower than the temperature of saturated water in the steam generator, so that , when
15、160;feed water entering, it will absorb a lot of extra heat, the vapor phase bubble contents will reduce, resulting in w
16、ater level decreasing; on the other hand, the increase in water flow GW made it greater than steam loa</p><p> B.
17、60;Dynamic Characteristics under Steam Load Disturbance Suppose feed water flow GW remains unchanged, and steam load GS step incr
18、eases, on the one hand the water level will flow down because the steam flow rate is greater than the water flow&
19、#160;rate. On the other hand, as the steam load increased, vapor pressure is reduced; the bubble volume on the liquid
20、0;surface increases, causing the water level increased. Comprehensive two factors, after the step increase of the steam flow rate,
21、 the water</p><p> III. DESIGN OF WATER LEVEL FUZZY CONTROLLER </p><p> The conventional PID controller has a poor
22、60;control performance to the steam generator that exist“false water level” characteristics, showing a greater overshoot in the trackin
23、g time. But a well-designed fuzzy controller is able to overcome the "false water level" phenomenon, and has good c
24、ontrol performance. </p><p> A. Sstructure of Fuzzy Controller The structure showed in Figure 1.</p><p> Choose th
25、e water level error (e) and change rate of error (ec) as input of the fuzzy controller, the output of the fuzzy
26、0;controller is the added value of the valve opening signal Δu. Meanwhile, use the steam flow feed-forward to overcome the
27、60;"false water level" phenomenon, use water flow feedback to overcome fluctuations in water supply side . k1, k2 were
28、160;water flow and steam flow transmitter conversion factor. To ensure the water flow to match the steam flow, k1 and k2
29、 values should be equal t</p><p> B. Fuzzy theory, fuzzy subset and Membership Function </p><p> The fuzzy Analects
30、 of e, ec and u are [-6, 6], both with seven fuzzy sets NB (negative big), NM (negative middle), NS (negative
31、small), ZO (zero), PS (positive small), PM (positive middle) and PB (positive big) to describe. e, ec and, Δu are all
32、60;using triangular membership function (see Figure 2)</p><p> Figure 2. Input and output variable membership function</p><p>
33、C. Fuzzy control rule table </p><p> The establishment principle of fuzzy control rules are: when the error is large,
34、60;the output control volume should give priority to eliminate error as soon as possible; when the error is small, the o
35、utput control volume should givepriority to prevent overshoot. Where ec is negative ,it shows that water level has a rising
36、160;trend, if the water level is high at this time, then we should reduce the valve opening signal; whereas, we should
37、160;open the valve more. Through a comprehensive analysis of expert</p><p> Table 1. Fuzzy control rule table</p><p> D.
38、160;Fuzzy Reasoning and Solution </p><p> This fuzzy inference system uses Mamdani. The basic properties of fuzzy inference s
39、ystem set to: "and" operation with a very small operation; "or" operation uses the maximum operation. Using a
40、very small operation fuzzy implication, fuzzy rules integrated with great operations center Defuzzification method used. IV. SIMULATIO
41、N EXAMPLES A pressurized water reactor steam generator in Chinese Qinshan nuclear power station has empirical model G1 (s),
42、;G2 (s) below:</p><p> where Ps denote the rated load. When load at 15% ~ 90% Ps, use (6) and (8); when lo
43、ad less than 15% Ps, use (7) and (8).</p><p> The coefficients in Control system are k1=k2=0.5. Water control valve
44、is a king of linear valve, its gain is 4. The quantitative coefficients of e and ec are 6 and 60 respectively;
45、;the scale factor of u is 0.5. We limit water flow the range of 0 kg / s to the rated flow 258kg / s
46、 when simulation. Consider the expected level step from the initial 0m to 10m, water level response is shown use the
47、0;solid line in Figure 3. For contrasting the increase effect of fuzzy controller, we also carried out us</p><p> V.
48、;CONCLUSION </p><p> This paper designed a water level fuzzy control system aimed at steam generator?s characteristics of lar
49、ge time delay and model uncertainty. We also gave a simulation to the steam generator of Qinshan nuclear power plant, an
50、d achieved satisfactory results. The method can also be used for other large time -delay and time-varying process control mod
51、el, and has broad application prospects.</p><p><b> 譯文</b></p><p> 蒸汽發(fā)生器水位模糊控制研究</p><p><b> 1.導(dǎo)論 </b></p><p>
52、 蒸汽發(fā)生器是壓水反應(yīng)堆式核電廠里的一個(gè)重要的設(shè)備。為了保證核電廠運(yùn)行的安全性,蒸汽發(fā)生器的水位必須控制在一定的范圍內(nèi)。核電廠的運(yùn)行中,因?yàn)檎羝髁亢徒o水流量的改變,蒸汽發(fā)生器里沸水中的氣泡數(shù)量會(huì)隨著局部氣壓和溫度的變化而改變,瞬時(shí)水位呈現(xiàn)“虛假液位”現(xiàn)象。正是由于“虛假液位”的存在使得水位控制變得困難。將前饋控制引入到傳統(tǒng)的單回路PID控制中,可以在一定程度上克服“虛假液位”的問題。但是蒸汽發(fā)生器的傳統(tǒng)PID控制仍然存在著一些不足。
53、對(duì)于具有高度復(fù)雜,大滯后,非線性特征的蒸汽發(fā)生系統(tǒng),不僅PID參數(shù)的調(diào)整單調(diào)乏味,控制效果也很差。并且當(dāng)條件改變時(shí),為了獲得好的控制性能,通常需要改變PID控制器的參數(shù),但是模擬量的PID控制器參數(shù)的在線調(diào)整是很難的。模糊控制是一種基于模糊推理的非線性的控制方法,它體現(xiàn)了熟練操作人員的實(shí)際經(jīng)驗(yàn)和模糊語言推理的一般規(guī)則。模糊控制不需要知道被控對(duì)象的精確的數(shù)學(xué)模型,它對(duì)過程參數(shù)的變化并不敏感,魯棒性很強(qiáng),能夠克服非線性因素,因此,模糊控制有
54、更快的響應(yīng)速度,更小的超調(diào),更好的控制效果?;谝陨狭私?,本文設(shè)計(jì)了一個(gè)蒸汽發(fā)生器水位的模糊控制器,仿真結(jié)果表明這個(gè)控制器有</p><p> 2.蒸汽發(fā)生器的動(dòng)態(tài)特性 壓水堆蒸汽發(fā)生器一般形式的數(shù)學(xué)模型的傳遞函數(shù)如下所示: </p><p> y(s)=GW(s)QW(s)+GS(s)QS(s)
55、 (1) </p><p> 其中,y代表蒸汽發(fā)生器的水位;QW代表給水流量;QS代表蒸汽流量;GW代表給水流量對(duì)蒸汽發(fā)生器水位的作用;GS代表蒸汽流量對(duì)蒸汽發(fā)生器的水位的作用。 蒸汽發(fā)生器水位的平衡是靠蒸汽流量和給水流量的匹配來維持的??梢詫⑺浑S蒸汽流量或者給水流量變化而變化看作一個(gè)簡單的一體化過程,蒸汽流量變化和給水流量變化對(duì)水位的影響又是不
56、同的。 </p><p> (1)給水流量擾動(dòng)下的動(dòng)態(tài)特性 假設(shè)蒸汽流量保持不變,而給水流量階躍增加,一方面,由于新增給水的溫度要比蒸汽發(fā)生器中的飽和水的溫度低很多,因此,當(dāng)新水進(jìn)入后就會(huì)吸收大量的額外熱量,水中的氣泡含量大大減少,從而導(dǎo)致水位下降;另一方面,給水流量大于蒸汽負(fù)荷,引起水位線性增加。綜合以上兩點(diǎn),當(dāng)給水階躍增加,水位增長會(huì)有一個(gè)延遲的過程,表現(xiàn)為先下降后上升。</p&
57、gt;<p> (2)蒸汽負(fù)荷擾動(dòng)下的動(dòng)態(tài)特性</p><p> 假設(shè)給水流量保持不變,蒸汽負(fù)荷階躍增加,一方面,由于蒸汽流速比給水流速大,水位會(huì)下降;另一方面,隨著蒸汽負(fù)荷的增加,內(nèi)部蒸汽壓力降低,液面的氣泡容積增加,從而引起水位增加。綜合以上兩個(gè)因素,當(dāng)蒸汽流量階躍增加以后,水位下降會(huì)有一個(gè)延遲的過程,表現(xiàn)為先上升后下降。 給水流量或者蒸汽流量階躍減少對(duì)水位的影響與上述有相似的原
58、理。 綜上所述,當(dāng)給水流量或者蒸汽負(fù)荷變化,水位不會(huì)立即跟隨變化,開始會(huì)出現(xiàn)一個(gè)相反的過程。這個(gè)現(xiàn)象就稱為“虛假液位”現(xiàn)象。</p><p> 3.水位模糊控制器的設(shè)計(jì) </p><p> 傳統(tǒng)PID控制器對(duì)于蒸汽發(fā)生器水位的控制效果不佳,存在“虛假液位”的現(xiàn)象,表現(xiàn)為跟蹤設(shè)定值時(shí)有較大的超調(diào)。但是,一個(gè)設(shè)計(jì)合理的模糊控制器能夠克服“虛假液位”的現(xiàn)象,有較好的控制
59、效果。</p><p> (1)模糊控制器的結(jié)構(gòu) 模糊控制器的結(jié)構(gòu)如圖1所示</p><p> 選擇水位偏差(e)和偏差變化率(ec)作為模糊控制器的輸入,模糊控制器的輸出量為閥門開度的增量信號(hào)Δu。同時(shí),以蒸汽流量作為前饋信號(hào)來克服“虛假液位”現(xiàn)象,以給水流量作為內(nèi)反饋信號(hào)來克服給水波動(dòng)。k1,k2是給水流量和蒸汽流量的傳感器的轉(zhuǎn)換系數(shù)。為了保證給水流量等于蒸汽流量,
60、160;k1和k2應(yīng)該相等。 </p><p> (2)模糊理論、模糊子集和隸屬函數(shù) e、ec 和 u 的模糊論域是[-6, 6],用NB(負(fù)大)、NM(負(fù)中)、NS(負(fù)?。?、ZO(零)、PS(正小)、PM(正中)和PB(正大)7個(gè)模糊子集描述。e,ec 和Δu 都采用三角形隸屬函數(shù)(如圖2)。</p><p
61、> (3)模糊控制規(guī)則列表 </p><p> 模糊控制規(guī)則建立的原則是:當(dāng)偏差大,輸出控制量應(yīng)該優(yōu)先以盡快消除偏差為主;當(dāng)偏差小,輸出控制量應(yīng)優(yōu)先消除超調(diào)。當(dāng)偏差變化率為負(fù),這表明水位有上升的趨勢(shì),如果此時(shí)水位高,應(yīng)減小閥門開度;相反,應(yīng)就應(yīng)當(dāng)開大閥門。通過專業(yè)的分析,建立如表1所示的規(guī)則表。</p><p> (4)模糊推理和模糊判決 </p&
62、gt;<p> 本次設(shè)計(jì)的模糊推理系統(tǒng)采用Mamdani型。模糊推理系統(tǒng)的基本屬性設(shè)置為:“與”算法為取小算法;“或”算法為取大算法。模糊蘊(yùn)含采用取小算法;模糊綜合采用取大算法;清晰化采用重心法。</p><p><b> 4.仿真實(shí)例 </b></p><p> 中國秦山核電站的一個(gè)壓水堆蒸汽發(fā)生器有如下的實(shí)驗(yàn)?zāi)P停?lt;/p>
63、;<p> 其中,Ps表示額定的負(fù)荷。當(dāng)負(fù)荷為15% ~ 90% Ps時(shí),用公式(6) 和(8),當(dāng)負(fù)荷小于15% Ps時(shí),用公式(7)和(8)。</p><p> 控制系統(tǒng)的系數(shù)k1=k2=0.5。給水控制閥是一個(gè)線性閥,增益為4。e和ec的量化因子分別為6和60,u的比例因子為0.5。仿真時(shí),我們限定給水流量的范圍在0kg/s到額定流量258
64、kg/s。假設(shè)預(yù)期水位從0m上升到10m,水位響應(yīng)如圖3中的實(shí)線所示。為了比較模糊控制器增加的效果,我們也作出傳統(tǒng)PID控制的仿真結(jié)果??梢钥闯?,與傳統(tǒng)PID控制相比,模糊控制在超調(diào)量、調(diào)節(jié)時(shí)間和穩(wěn)態(tài)特性方面有重要的改善。</p><p><b> 5.結(jié)論 </b></p><p> 本論文針對(duì)蒸汽產(chǎn)生器大延遲和模型不確定的特性,設(shè)計(jì)了一個(gè)水位模糊控
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯----蒸汽發(fā)生器水位模糊控制
- 外文翻譯----蒸汽發(fā)生器水位模糊控制
- 外文翻譯--蒸汽發(fā)生器水位模糊控制研究
- 外文翻譯----蒸汽發(fā)生器水位模糊控制.doc
- 外文翻譯----蒸汽發(fā)生器水位模糊控制.doc
- 核蒸汽發(fā)生器的水位控制.pdf
- 基于T-S模型的蒸汽發(fā)生器水位模糊控制.pdf
- 蒸汽發(fā)生器水位控制畢業(yè)論文中英文資料外文翻譯
- 蒸汽發(fā)生器水位控制系統(tǒng)仿真研究.pdf
- 蒸汽發(fā)生器水位特性與智能控制方法研究.pdf
- 蒸汽發(fā)生器水位控制系統(tǒng)容錯(cuò)控制方法研究.pdf
- 蒸汽發(fā)生器水位模型預(yù)測(cè)控制方法研究.pdf
- 基于LMI方法的蒸汽發(fā)生器水位的控制.pdf
- U型蒸汽發(fā)生器水位的H∞跟蹤控制.pdf
- 直流蒸汽發(fā)生器的模糊變結(jié)構(gòu)控制.pdf
- 基于FCS的蒸汽發(fā)生器水位控制系統(tǒng)研究.pdf
- 蒸汽發(fā)生器水位控制系統(tǒng)設(shè)計(jì)與在線仿真.pdf
- 核蒸汽發(fā)生器水位的滑??刂葡到y(tǒng)研究.pdf
- 基于PID和H-,∞-控制方法的蒸汽發(fā)生器水位控制.pdf
- 預(yù)測(cè)控制在核電蒸汽發(fā)生器水位控制中的研究應(yīng)用.pdf
評(píng)論
0/150
提交評(píng)論