外文翻譯--煤巷中相似模擬錨桿支護的構(gòu)造應(yīng)力場_第1頁
已閱讀1頁,還剩17頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  中文翻譯:</b></p><p>  煤巷中相似模擬錨桿支護的構(gòu)造應(yīng)力場</p><p>  陸嚴 礦業(yè)學院,中國礦業(yè)大學,徐州</p><p>  劉長友 煤炭資源和煤炭安全的國家重點實驗室,徐州</p><p>  文摘:為了研究錨桿支護作用機理和地層特性在煤礦軟巖巷道頂板、底板和邊幫

2、的構(gòu)造應(yīng)力、變形和破壞,而進行的一個仿真的實驗。我們還研究了機械原理和類型的錨桿支護煤巷函數(shù)。結(jié)果表明,隨著水平構(gòu)造應(yīng)力的增加,地層在頂板和底板的道路逐漸分開,并成為區(qū)域剪切破壞。煤炭的邊幫是波動,但其完整性仍然完好無損。邊幫錨桿是主要受張力,頂板錨桿受剪切應(yīng)力的作用。</p><p>  關(guān)鍵詞:構(gòu)造應(yīng)力;煤巷;錨桿支護;相似模擬</p><p><b>  1、介紹</

3、b></p><p>  目前主要應(yīng)用于錨桿支護煤巷。地層特性的不同受到構(gòu)造應(yīng)力影響不同。研究表明構(gòu)造應(yīng)力可以近似看作是水平應(yīng)力。在國內(nèi)外,已經(jīng)進行了相當多的巷道構(gòu)造應(yīng)力研究。然而,很少有研究錨桿支護機理中存在的構(gòu)造應(yīng)力。在我們的調(diào)查中,我們用相似模擬研究變形和破壞的頂板、底板和邊幫,以及機制和類型的煤巷錨桿支護時的水平構(gòu)造應(yīng)力。在我們的相似模擬實驗,我們提供了理論依據(jù)和指導,有利于接近生產(chǎn)、確保安全開采實

4、踐。</p><p>  2、主要內(nèi)容及研究方案</p><p>  相似模擬實驗,我們在構(gòu)造應(yīng)力場中研究了三種地層特性的煤層巷道。1)、巖石巷道圍巖破壞的發(fā)展條件;2)、頂板、底板和邊幫的地表位移;3)、在頂板和邊幫的錨桿支護機理和錨桿應(yīng)力。</p><p>  相似實驗包括4個方案:在每個方案中施加0.5mpa的垂直壓力在巷道上。我們允許水平構(gòu)造應(yīng)力增加0.25

5、,0.50,1.00至1.50mpa,側(cè)壓力系數(shù)從0.5,1.0,2.0到3.0。</p><p><b>  3、實驗</b></p><p><b>  3.1、系統(tǒng)</b></p><p>  為了接近在煤巷中錨桿支護的地質(zhì)特性,我們用一個由中國礦業(yè)大學開發(fā)真正的三軸巷道模擬實驗平臺。該平臺由三大系統(tǒng)組成,如圖1所示

6、,一個裝載部分,一個框架和測試設(shè)備。</p><p>  加載系統(tǒng)由液壓泵,液壓控制面板,液壓管道和液壓枕;火焰由隔板和位移傳感器,壓力傳感器,電路,一個T$3890A可編程靜態(tài)電阻應(yīng)變儀和一臺電腦組成的測試系統(tǒng)。該實驗系統(tǒng)可以在三個方向上的模型施加不平等的力量,并精確地模擬平面應(yīng)變問題。平面應(yīng)變模型模擬巷道的問題,是比平面應(yīng)力模型更接近實際情況。本系統(tǒng)的主要參數(shù)和特點如下:</p><p&g

7、t;  1)、模擬火焰的長度,寬度和厚度分別為1.0,1.0和0.2米。</p><p>  2)、液壓枕是用來加載的六個面的模型,其中每一個液壓枕覆蓋一方;模型表面上施加最大壓力可達10兆帕。</p><p>  3)、在穩(wěn)定的條件下,受高壓控制的液壓系統(tǒng),可以裝載很長一段時間的模型。</p><p>  4)、通過各種不同的傳感器連接到電腦,可以實時監(jiān)測各種觀測

8、數(shù)據(jù)。</p><p>  液壓控制面板 液 壓 枕 </p><p><b>  計算機 </b></p><p>  液 壓 管 路 框 架 </p><p>  圖1 真三軸巷道仿真實驗平臺</p><p><b>  3.2、參

9、數(shù)</b></p><p>  為了反映直接和適當?shù)南锏赖钠茐暮凸δ苣J降臉?gòu)造應(yīng)力影響的錨桿,我們用幾何相似常數(shù)為20的模型,設(shè)計巷道的大小為4米×3米。用于模擬巖石的材料包括沙、CaC03、水泥和含水量為1/10和容重約為1.50的石膏。原巖的容重是2.50,容重相似性常數(shù)是1.67,強度相似常數(shù)==33.4。模型參數(shù)和物質(zhì)成分比例列于表l和實驗?zāi)P蛨D2中。</p><

10、p><b>  七 層 </b></p><p>  主要頂板 </p><p>  六 層 </p><p><b>  五 層 </b></p><p&

11、gt;  臨 時 頂 板 四 層 </p><p><b>  三 層 </b></p><p>  巷道 煤礦:二層 </p><p>  底板:一層 </p><p><b>  圖2實驗仿真模型</b></p><

12、p>  表1模型參數(shù)和物質(zhì)成分比例</p><p><b>  3.3數(shù)據(jù)監(jiān)控</b></p><p>  鑒于實驗的目的,我們需要監(jiān)測巷道的地表位移和作用于錨桿上的力。監(jiān)控設(shè)備的布局如圖3所示。位移計被放置在巷道表面,巖內(nèi)提前埋錨桿。使用一個1.8毫米的導線,用以模擬一根錨桿,銅導線連接導線兩端,導到模型外,并連接到TS3890A可編程靜態(tài)電阻應(yīng)變計。導線測量

13、的電信號反映引導力的狀態(tài):較大的拉力施加的導線上,它變得更薄和更大的阻力,電流變得較小。</p><p><b>  位移計 </b></p><p><b>  圖3測量設(shè)備的配置</b></p><p><b>  4、結(jié)果與討論</b></p><p>  4.1煤巷道周

14、圍巖石的破壞</p><p>  不同構(gòu)造應(yīng)力作用下,煤巷圍巖的破壞狀態(tài)如圖4所示。實驗結(jié)果表明,當側(cè)壓系數(shù)λ= 0.5,進入巷道巖石拉伸,在頂板和底板的地層之間有一個斷層,但巖石保持完整。當λ=1.0時,頂板和底板之間的斷層有所增加。巷道上方的軟弱巖層和硬質(zhì)巖層有所分離,巷道圍巖在巷道內(nèi)表現(xiàn)的更加明顯。當λ=1.0-2.0巷道的頂板逐漸變?yōu)榧羟衅茐膮^(qū);當λ= 2.0,軟巖巷道頂板開始下降,底板也成為一個剪切破壞

15、區(qū),不同巖層之間的錯位變得更加明顯。當λ= 3.0,頂板脫落到巷道內(nèi),成為曲線向上的拱形。底板的剪切破壞繼續(xù)擴大,巖層之間的錯位繼續(xù)增加。特別是煤層和第三層,煤之間的煤層的巷道形成了相當大的距離。</p><p>  (a) λ=0.5 (b) λ=1.0 (c) λ=2.0 (d) λ=3.0</p><p>  圖4 圍巖破壞的狀態(tài)</p>

16、;<p>  這一分析表明,水平構(gòu)造應(yīng)力的增加,巷道周圍巖石的破壞變得更糟;頂板和底板之間的錯位,巖層之間的分裂逐漸增加地層的剪切和彎曲能力減弱,最終在頂板和底板直間的巖層形成了剪切破壞區(qū),導致頂板的錨桿失去了它的支撐能力。頂板逐漸陷入一個拱形;煤巷邊幫顯示整體向巷道空間的趨勢。雖然在側(cè)墻煤炭的完整性保持不變,垂直頂板的圍巖和煤礦石之間的錯位逐漸增加。</p><p>  4.2煤巷道表面位移<

17、;/p><p>  鑒于我們的實驗結(jié)果,不同層次的構(gòu)造應(yīng)力巷道表面位移如表2所示。</p><p>  表2 巷道表面位移</p><p>  表2顯示,受到越來越多的構(gòu)造應(yīng)力,巷道頂板位移收斂到最大。煤巷道的邊幫和沿彼此在頂板和底板地層滑動,從側(cè)面墻壁的煤炭進入巷道空間和在煤的墻壁成為明顯的塑料脹。側(cè)壓力系數(shù)增加,巷道表面位移變得迅速,尤其是變形后的頂板和底板的剪切

18、破壞,地表位移也迅速增加。當側(cè)壓力系數(shù)λ> 2.0,頂板逐漸下降,成為一個拱形,巷道頂部的測量點被破壞,地表位移難以測量。</p><p>  4.3煤巷錨桿支護的作用機理</p><p>  從實驗中的錨桿強烈變形,我們得出這樣的結(jié)論:邊幫錨桿變形主要是由張力和變形主要由頂板錨桿剪切破壞引起。圖5表明,邊幫錨桿變形由拉伸引起,越靠上的錨桿受力荷載越大,越低的錨桿荷載越小。側(cè)壓力系數(shù)

19、增加,錨桿的張力也逐漸增加。當側(cè)壓系數(shù)λ>2.0,錨桿的負荷變化不大。頂板錨桿主要是由剪切引起的變形。導線延長的長度小,錨桿的電阻變化也很小。頂板和底板的地層在構(gòu)造應(yīng)力作用下,有可能成為剪切破壞區(qū)。那里是一個松散的錯位造成的膨脹,導致圍巖變形。錨桿的功能是限制地層沿軸線膨脹,并防止剪切垂直的軸向破壞。因此,錨桿必須有高強度,高剛度和高剪切力的屬性,以便它可以抑制變形的巖石。</p><p>  側(cè)壓力系數(shù)

20、 λ 側(cè)壓力系數(shù) λ</p><p>  圖5 錨桿上電信號的變化</p><p>  這一分析表明端錨桿在很大程度上控制了巷道的邊幫,以防止變形進入巷道空間,屋頂螺栓主要控制巷道的剪切破壞。當巖石被破壞,錨桿提供約束力和增加巖石的殘余力量。在錨桿支護的設(shè)計,我們應(yīng)該選擇具有較強的抗拉能力和較強抗剪切能力的錨桿,以釋放一些變形能量,這是適應(yīng)在

21、邊幫煤炭的大變形。頂板錨桿應(yīng)選擇具有較高的抗剪切能力和高強度,以防止分離、錯位和頂板巖層剪切破壞。</p><p><b>  5結(jié)論</b></p><p>  從我們的相似模擬在構(gòu)造應(yīng)力場的煤巷錨桿支持,我們得出如下結(jié)論:</p><p>  構(gòu)造應(yīng)力增加時,巷道圍巖的破壞加速,由于剪切和彎曲能力的損失,使得階層之間形成軟弱結(jié)構(gòu)面,巷道的頂

22、板和底板的錯位在各階層之間越發(fā)明顯。最后頂板和底板的階層均形成剪切破壞區(qū),頂板錨桿失去它們的支撐功能并且逐漸脫落。隨著頂板偏移和位移的增加,煤礦從邊幫進入巷道,而另一邊幫的完整煤礦依然保持它的完整性。</p><p>  邊幫錨桿變形,主要是由張應(yīng)力引起。當上幫錨桿應(yīng)力較大時,下幫錨桿應(yīng)力相對較小。當側(cè)壓系數(shù)λ> 2.0時,錨桿上的應(yīng)力變化不大,頂板錨桿的負荷主要是由剪切變形引起的。當巖層被破壞,屋頂螺栓提

23、供了約束力,增加巖石的殘余力量。當巖層被破壞,頂板錨桿提供了約束力,增加巖石的殘余力量。</p><p>  3)巷道頂板塌陷是最嚴重的事件。在頂板和底板地層滑動時,邊幫的煤礦順勢進入巷道空間。在煤礦邊幫塑膠脹是顯而易見的。當側(cè)壓力系數(shù)增加時,巷道的地表位移迅速增加。頂板和底板受剪切破壞后,地表位移大大增加。</p><p><b>  致謝</b></p>

24、;<p>  這項工作的資金由國家煤炭資源重點實驗室研究基金提供,和對中國礦業(yè)大學煤礦安全深表感謝。</p><p><b>  英文原文:</b></p><p>  Similarity simulation of bolt support in a coal roadway in a tectonic stress field</p>

25、<p>  LU Yan School of Mines,China University of Mining&Technology,Xu zhou,China</p><p>  LIU Chang you State Key Laboratory of Coal Resources and Mine Safety,Xu zhou ,China</p><p>  A

26、bstract:In order to study the mechanism of bolt support and the behavior of strata in a coal roadway under tectonic stress,deformation and destruction of a roof,floor and sides were studied using an experiment in similar

27、ity simulation.We also studied the mechanism and types of bolt support functions in the coal roadway.The results show that with an increase in horizontal tectonic stress,the strata in the roof and floor of the roadway gr

28、adually separate and become shear failure areas.Coal in sid</p><p>  Keywords:tectonic stress;coal roadway;bolt support;similarity simulation</p><p>  1 Introduction</p><p>  At pre

29、sent bolt support is mainly used in coal roadways.where strata behavior varies under different effects of tectonic stress.Research shows that tectonic stress call be approximately considered as horizontal stress.A consid

30、erable amount of research has been carried out on roadways under tectonic stress,both at home and abroad.However,there is little research on bolt support mechanism in the presence of tectonic stress .In our investigatio

31、n,we used similarity simulation to study the deformati</p><p>  the mechanism and types of bolt support in coal roadways when under horizontal tectonic stress.From our experiment in similarity simulation,we

32、provide a theoretical basis and guidance beneficial to nearby production and insure safe mining practices。</p><p>  2 Main research content and scheme</p><p>  With similarity simulation,we stud

33、ied three kinds of strata behavior of a coal roadway in a tectonic stress field。i)developing conditions for the destruction of the rock surrounding a roadway;ii)the surface displacement of a roof,a floor and side walls ;

34、iii)the mechanism of bolt support and the stress of the bolts in roof and side walls.</p><p>  The similarity experiment consisted of four schemes:vertical stress exerted on a roadway was 0.50 MPa in each sc

35、heme.we allowed horizontal</p><p>  tectonic stress to increase from 0.25,0.50.1.00 to 1.50 MPa and the side pressure coefficient A from 0.5,1.0,2.Oto 3.0.</p><p>  3 Experimental</p><

36、;p>  3.1 System</p><p>  In order to approximate strata behavior of bolt support in a coal roadway,we used a true triaxial roadway simulation experimental platform developed by China University of Mining&

37、amp;Technology.This platform consists of three systems, a loading part,a frame and test devices.a(chǎn)s shown in Fig.1.The loading system consists of a hydraulic pump,a hydraulic control panel,a hydraulic pipeline and hydraul

38、ic pillows;the flame consists of baffles and the test system consists of a displacement sensor,a stress s</p><p>  1)The length,width and thickness of the mode flame are 1.0,1.0 and 0.2 m.</p><p&g

39、t;  2)The hydraulic pillows are used to load the six sides of the model,where every hydraulic pillow covers one side;the maximum stress exerted on the model surface can reach 10 MPa.</p><p>  3)The hydraulic

40、 system,controlled by high pressure,Can load the model for a long time under stable conditions.</p><p>  4)By using difierent kinds of sensors connected to the computer,data of various observations can be mo

41、nitored in real-time.</p><p>  Fig.1 Experimental platform of true triaxial roadway simulation</p><p>  3.2 Parameters</p><p>  In order to reflect directly and suitably the destruc

42、tion of the roadway and the functional mode of the bolts affected by tectonic stress,we used a geometric similarity constant for the model,,of 20;the size,</p><p>  ,of the roadway designed was 4 m×3 m.

43、The material used to simulate rock consisted of sand,CaC03,cement and gypsum with a water content of</p><p>  1/1 0 and a bulk density of about 1.50 .The bulk density of the original rock,,was 2.50,with a si

44、milarity constant of bulk density,,,of 1.67.The intensity similarity constant,,was</p><p>  ==33.4.The model parameters and material component ratios are shown in Table l and the experimental model in Fig.2.

45、</p><p>  Fig.2 Experimental simulation model</p><p>  Table 1 Model parameters and material component ratios</p><p>  3.3 Data monitoring</p><p>  Given the objective

46、of the experiment,we needed to monitor the surface displacement of the roadway and forces acting on the bolt.The layout of the monitoring equipment is shown in Fig.3.A displacement meter was placed on the surface of the

47、roadway,with a bolt buried inside the rock in advance.Using a φ 1.8 mm lead wire to simulate a bolt,a copper wire was attached to both ends of the lead wire,leading to the outside of the model and connected to the TS3890

48、A programmable static resistance strain </p><p>  Fig.3 Disposition of the measurement device</p><p>  4 Results and discussion</p><p>  4.1 Destruction of the rock surrounding a co

49、al roadway</p><p>  Under the effect of different tectonic stresses,the state of destruction of the rock of the coal roadway is shown in Fig.4.The result of the experiment shows that when the side pressure c

50、oefficientλ=0.5,the rock extrudes into the roadway;there is a little dislocation between the strata in the roof and floor,but the rock remains complete.When λ=1.0.the dislocation between the strata in the roof and floor

51、increases,the soft stratum and the hard stratum above the roadway have separated and the road</p><p>  (a)λ=0.5 (b)λ=1.0 (c)λ=2.0 (d)λ=3.0</p><p>  Fig.4 State of destruction

52、 of surrounding rock</p><p>  This analysis shows that·with the increase of horizontal tectonic stress,the destruction of the rock surrounding the roadway becomes worse;there is dislocation between the

53、strata in both the roof and floor,separation between strata gradually increases,the shear and bending ability of the strata weakens and finally the strata in the roof and floor become shear failure areas,causing the roof

54、 bolts to lose their support function.The roof strata gradually fall into an arch;the coal in the side walls</p><p>  4.2 Surface displacement of coal roadway</p><p>  Given our experimental res

55、ults,the surface displacement of the roadway is shown in Table 2 under different levels of tectonic stress.</p><p>  Table 2 Displacement of the roadway surface</p><p>  Table 2 shows that under

56、 increasing tectonic stress,the roof displacement of the roadway converges to a maximum.The coal of the side walls of the roadway and in the roof and floor strata slide along each other and the coal from the side walls m

57、oves into the roadway space and plastic Dilatancy of the coal in the walls become obvious.With an increase in the side pressure coefficient,the surface displacement of the roadway becomes rapidly deformed,especially afte

58、r the shear destruction of the roof </p><p>  4.3 Functional mechanism of bolt support in coal roadway</p><p>  From the macro deformation of the bolts in the experiment,we conclude that the def

59、ormation of the side bolts is mainly caused by tension and the deformation of the roof bolts mainly by shear.Fig 5 shows that the side bolts are deformed because of tension,where the load on the upper shoulder bolt is la

60、rgest and on the lower bolt smallest.With an increase in the side pressure coefficient,the tension in the bolts gradually increases.When the side pressure coefficient λ>2.0,the load on the bolts cha</p><p&g

61、t;  There is a loose swell caused by dislocation,causing deformation in the surrounding rock.The function of the bolts is to constrain the strata from swelling along the axis and to prevent shear perpendicular to the axi

62、s.Therefore,the bolts must have properties of high strength,high stiffness and a high shear force,so that it can restrain deformation of the rock.</p><p>  Fig.5 Changes in electrical signals in bolts</p&

63、gt;<p>  This analysis shows that side bolts largely control the sides of the roadway in order to prevent deformation into the roadway space and that roof bolts mainly control shear failure of the roadway.When the

64、 rocks</p><p>  are destroyed,the bolts provide the binding force and increase the residual strength of the rocks.In the design of bolt support,we should select bolts with strong tensile ability and high elo

65、ngation as side bolts,in order to release some deformation energy and which are adaptable to large deformations of the coalin side walls.Bolts with high anti-shear ability and high stiffness should be selected for roof b

66、olts,to</p><p>  prevent separation,dislocation and shear failure of roof strata.</p><p>  5 Conclusions</p><p>  From our similarity simulation of bolt support for a coal roadway i

67、n a tectonic stress field,we conclude the following.</p><p>  1)With an increase in tectonic stress,the destruction of the roadway rock accelerates,there is dislocation between the strata in the roof and flo

68、or of the roadway and separation between strata gradually increases,1eading to strata weakness because of shear and a loss of bending ability。In the end,the strata of the roof and floor become shear failure areas,where r

69、oof bolts lose their support function and roof strata gradually fall into arches.Coal from the side walls moves into the roadway,the di</p><p>  2)Side bolts deformed mainly because of tension.When the load

70、on the upper shoulder bolt is large,theload on the lower bolt is small.When the side pressure coefficient λ>2.0,the load on the bolts changes</p><p>  little and the roof bolts deform mainly because of sh

71、ear.When the strata are destroyed,roof bolts provide a binding force and increase the residual strength of rocks.</p><p>  3)The collapse of the roadway roof is the worst incident.The coal in the side walls

72、of the roadway and in the roof and floor strata slide along each other and moves into the roadway space.Plastic Dilatancy of the coal in the side walls is obvious.With an increase in the side pressure coefficient,the sur

73、face displacement rapidly deforms the roadway.After the destruction of the roof and floor by shearing.the surface displacement increases greatly.</p><p>  Acknowledgements</p><p>  Financial sup

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
  • 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論