2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩15頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  附錄:</b></p><p><b>  外文資料與中文翻譯</b></p><p>  Micro-feed Mechanism with High-Resolution and Large-StrokeBased on Friction Drive</p><p>  Haitao L

2、iu?, Zesheng Lu</p><p>  School of Mechantronics Engineering, Harbin Institute of TechnologyABSTRACT</p><p>  Based on friction driving principle, design a long stroke length and high resolutio

3、n walking micro-feeding device driven by piezoelectric ceramic elements and combined with the screw shaft and aerostatic guide way. The design was made to the adjustable preload device by flexible four-bar linkage. The s

4、tatic properties of flexible linkage device are analyzed with FEM. The transmission characteristics of micro-feeding device are exhaustively analyzed.</p><p>  Keywords: Friction drive, Piezoelectric actuato

5、r, Flexure hinge,Finite element</p><p>  1. INTRODUCTION</p><p>  Aspheric optics has been widely used in industries such as aviation, aerospace, national defense and so on. However, the manufac

6、ture of large aspheric optics faces many problems such as great difficulty, low efficiency, high cost, increased requirement on process equipment etc [1, 2] . In order to arrive at high precision, the micro displacement

7、resolution of ultra-precision machine must be further advanced, so as to compensating the processing error online. Therefore, the design of micro-feed m</p><p>  2. STRUCTURE AND OPERATING PRINCIPLE OF MICRO

8、-FEED MECHANISM</p><p>  The micro-feed mechanism is made up of three parts: friction gearing, ball screw and static-pressure air-bearing guide way. Micro-feed mechanism uses the piezoelectricity ceramic fri

9、ction gearing block, which twist up the sleeve and drive the ball screw, so as to bring along the air-bearing guide way to realize the micro-feed movement. The structure is shown as Figure 1.</p><p>  1-Bear

10、ing bracket 2-Friction gearing block 3 Friction gearing sleeve 4-Static-pressure air-bearing</p><p>  guide way 5- Ball screw 6- Piezoelectricity ceramic base 7-Piezoelectricity ceramic used for feeding Figu

11、re 1: (a) Structure of the feed mechanism</p><p>  As shown in Figure 2, the operating principle of the feed mechanism is that, friction gearing sleeve connects with ball screw, four friction gearing blocks

12、are placed symmetrically at both sides of the sleeve. Each block is droved by the corresponding piezoelectricity ceramic used for feeding and is gripped by the corresponding gripping mechanism, which is droved by the pie

13、zoelectricity ceramic used for gripping to produce clamp force. When feeding mechanism works, the piezoelectricity ceramic u</p><p>  Figure 1: (b) Picture of the feed mechanism</p><p>  Figure

14、2: Operating principle of the feeding mechanism</p><p>  3. DESIGN OF THE ADJUSTABLE PRETIGHTENING MECHANISM</p><p>  An adjustable retightening mechanism is required in the friction gearing mec

15、hanism, which must has enough pretightening force. The typical pretightening methods are plate spring pretightening mechanism, helical pretightening mechanism, and air pressure pretightening mechanism and so on. The reti

16、ghtening mechanism designed in this paper is flexible parallel four bars mechanism. It’s droved by piezoelectricity ceramic to supply pretightening force. The pretightening force can be changed by control</p><

17、p>  As shown in Figure 3, use the finite element software to analysis the static characteristic. When the drive force of piezoelectricity ceramic is 500N in maximum, the rigidity of flexible four bars mechanism, analy

18、zed by finite element software, is K=24. 1 5N/µm, and the maximum stress of flexible hinges is σ=32.7Mpa. If there is no distortion in flexible four bars mechanism (that is when the friction gearing blocks contact r

19、igidly), the output force of piezoelectricity ceramic will completely tr</p><p>  4. DRIVE CHARACTERISTIC ANALYSIS OF THE MECHANISM</p><p>  Studying and mastering the drive characteristic of me

20、chanism redounds to adopting the proper measures to improve the whole performance and provides the design basis for designing the control system.</p><p>  4.1 Drive torque</p><p>  When system s

21、tarts, there is a problem on initial inertia moment as a result of the existence of parts quality. To research the drive torque, choose the friction gearing sleeve as subject investigated. According to the theory that th

22、e kinetic energy of gearing train is same before and after conversion, the rotary inertia of each part is transformed to friction sleeve. Because of that, we can get the rotary inertia after conversion is</p><

23、p>  (a) Structure of the pretightening mechanism</p><p>  (b) Node motion nephogram(c) Von-mise stress envelope</p><p>  Figure 3: The static characteristic assay plan of pretightening mecha

24、nism</p><p>  Where p is pitch of lead screw, m;</p><p>  r is radius of the friction sleeve, m; </p><p>  mS is quality of the ball screw, kg;</p><p>  T is quality of

25、 the friction sleeve, kg.</p><p>  Through the above analysis, we get the equivalent rotary inertia of friction sleeve. Now we choose the friction sleeve as subject investigated to discuss the drive torque (

26、 drive force) that is needed when device starts and it’s influencing factors. The following equation works when device starts:</p><p>  Where J' is equivalent rotary inertia, kg·m2;</p><p

27、>  α is angular acceleration of friction sleeve, rad/s2;</p><p>  r is radius of the friction sleeve, m;</p><p>  M is drive torque, N·m;</p><p>  F is drive force (breakout

28、 friction between friction block and friction sleeve) , N.</p><p>  When system starts, a condign drive deflecting couple should be applied on the friction sleeve, in order that the sleeve can have certain a

29、ngular acceleration. The drive deflecting couple is generated by the output force of piezoelectricity ceramic. From equation 2 we can get that the equivalent rotary inertia of system, radius of the friction sleeve and dr

30、ive force of the piezoelectricity ceramic (breakout friction between friction block and friction sleeve) are the influencing factor of mechan</p><p>  4.2 Driving rigidity</p><p>  The driving r

31、igidity is one of the important driving characteristics of feed mechanism. Now we will analyze the driving rigidity of feed mechanism in detail as following.</p><p>  The rigidity of the feed mechanism is th

32、e cascade connection of the each segment rigidity of the feed mechanism, which has the calculated equation as follows:</p><p>  Where K is the total rigidity of the feed mechanism; </p><p>  KF

33、is the touching rigidity of surface in contact between friction block and friction sleeve;</p><p>  KS is the axial rigidity of lead screw;</p><p>  KS' is the axial rigidity changed from th

34、e torsional rigidity of lead screw;</p><p>  KN is the rigidity of nut;</p><p>  KB is the rigidity of axial bearing;</p><p>  KH is rigidity of nut bracket and bearing block;</p

35、><p>  KD is the axial rigidity of nut link block; </p><p>  Here is the analysis and calculation of part rigidity.</p><p>  4.2.1 Rigidity of the piezoelectricity ceramic</p>&

36、lt;p>  The piezoelectricity ceramic in this paper is the ceramic micro positioner typed WTYD0808055 produced by China Electronics Technology Group Corporation No.26 Research Institute. It’s rigidity measured through e

37、xperiment is 15.1 5N/µm, as shown in Figure 4.</p><p>  4.2.2 Touching rigidity of surface in contact between friction block and friction sleeve</p><p>  Two objects contacting with each ot

38、her will have certain tangential transition before relative slip in the action of tangential external force, which is called pre-displacement. The proportional relation between force and displacement reflects a rigidity

39、characteristic in fact [10]. The corresponding rigidity now is:</p><p>  Where k is const;</p><p>  N is normal pressure;</p><p>  r is the radius of idealized sphere on friction su

40、rface.</p><p>  It’s clear in the equation that, in special friction gearing system, k is got from experiment, r is const, the only influencing factor of touching rigidity is normal pressure N. It’s evident

41、that the larger N is, the larger the touching rigidity K is.</p><p>  Figure 4: Rigidity curve of piezoelectricity ceramic</p><p>  4.2.3 Axial rigidity changed from the torsional rigidity of le

42、ad screw</p><p>  The dimension of driving chain needs to be transformed uniformly when calculating it’s rigidity. Therefore, the torsional rigidity must be transformed into axial rigidity as the following e

43、quation:</p><p>  Where a is the rising angle of lead screw, (°);</p><p>  d is the diameter of lead screw, mm;</p><p>  F is the axial force of lead screw, N;</p><p

44、>  M is the input moment of lead screw, N·mm;</p><p>  q is the friction angle between lead screw and nut, (°);</p><p>  KT is the torsional rigidity of lead screw, N·mm/rad;&l

45、t;/p><p>  0 is the torsional deformation of lead screw, rad;</p><p>  p is the lead of lead screw, mm;</p><p>  G is the shear modulus of elasticity of lead screw material, Mpa;</p

46、><p>  JP is the inertia moment of cross section, mm4, JP=πd4/32;</p><p>  L is the maximum distance from loading point to two thrust bearing, mm.</p><p>  The axial rigidity of nut li

47、nk block can be gained by the finite element analysis. The rigidity of nut bracket and bearing</p><p>  block is very large, which can be dismissed. The rigidity of other parts can be got by looking up table

48、 and calculating.</p><p>  In a word, by deducing the equation of drive rigidity of feed mechanism, we have found the influencing factors of</p><p>  driving rigidity caused by each driving segm

49、ent, which offers the basis for further study on the driving characteristic.</p><p>  5. EXPERIMENTAL STUDY OF THE FEED MECHANISM 5.1 Foundation of the experiment system</p><p>  As shown in Fig

50、ure 5, the experiment system is made up of feed mechanism, computer, piezoelectricity ceramic driver and its power supply and the inductance amesdial.</p><p>  Figure 5: Foundation of experiment system</p

51、><p>  This paper uses a control method based on average curve model to set up the open loop control model. Above all, measure the experimental curve of relation between piezoelectricity ceramic control voltage

52、 and slide carriage distance. Using the Matlab software to fit the line with cubic algebraic multinomial, and the fitted line and fitted error line are as shown in Figure 6, from which we get the corresponding relational

53、 expression of control voltage and distance and therefore control the distanc</p><p>  a) Fitted line b) Fitted error line</p><p>  Figure 6: Fit with cubic algebraic

54、multinomial</p><p>  Relational expression of control voltage and distance is as shown in equation 7:</p><p>  Where x is the output distance, µm;</p><p>  u is the control vol

55、tage, V.</p><p>  5.2 Experimental study of system resolution</p><p>  As shown in Figure 7, piezoelectricity ceramic has certain elongation. At this time, the distance of micro working table is

56、 0.1 5µm. Then step elongating gradually on this base and keep 1.5s in each moment. The sampling time is 100ms. The resolution curve can be gained by measuring the practice distance of micro feed mechanism using the

57、 inductance amesdial.</p><p>  Figure 7: Distance resolution curve of feed mechanism</p><p>  6. CONCLUSION</p><p>  A step micro feed mechanism with long march and high resolution

58、was designed in this paper, and the following conclusions were concluded:</p><p>  1. Designed the pretightening mechanism based on the piezoelectricity ceramic flexible iron hinges and analyzed its static c

59、haracteristic using the finite element software;</p><p>  2. Analyzed the starting torque of micro feed mechanism and calculated the equivalent rotary inertia; analyzed the driving rigidity characteristic of

60、 micro feed mechanism and found its influencing factors;</p><p>  3. The march of the micro feed mechanism can reach 300mm, and the resolution is less than 0.05µm.</p><p>  REFERENCES</p

61、><p>  1. Seugng-Bok Choi, Sang-Soo Han. Position Control System Using ER Clutch and Piezoactuator. Pro. of SPIE, 2003, 5056: 424~431</p><p>  2. Suzuki H, Kodera S, Mabkawa S, et al. Study on Prec

62、ision Grinding of Micro a Spherical Surface. JSPE, 1998, 64(4):61 9~623.</p><p>  1. Arrasmith S. R, Kozhinova I A, Gregg L L et al. Details of The polishing Spot in Magnetorheological Finishing(MRF).Proceed

63、ings of SPIE-the International Society for Optical Engineering,</p><p>  2001 ,Vol.3782:92~100.</p><p>  2. Atherton P D, Xu Y, McConnell M. New X-Y Stage for Precision Positioning and Scanning.

64、 SPIE, 1996, 2865:1 5~20.</p><p>  3. Liu Yung -Tien, Toshiro Higuchi, Fung Rong-Fong. A Novel Precision Positioning Table Utilizing Impact Force of Spring-Mounted Piezoelectric Actuator. Precision Engineeri

65、ng, 2003, 27:14221</p><p>  4. Lobontiu N, Goldfarb M, Garcia E. A Piezoelectric Drive Inchworm Locomotion Device. Mechanism and Machine Theory, 2001, 36: 425~443.</p><p>  5. A. A. Elmustafa, M

66、ax G. Lagally. Flexural-hinge Guided Motion Nanopositioner Stage for Precision Machining: Finite Element Simulations. Precision Engineering, 2001, 25: 77~8 1</p><p>  6. Jaehwa Jeong, Young-Man Choi, Jun-Hee

67、 Lee. Design and Control of Dual Servo Actuator for Near Field Optical Recording System. Pro. of SPIE, 2005, 6048: 1~8</p><p>  7. Kim Jeong-Du, Nam Soo-Ryong. Development of a Micro-depth Control System for

68、 an Ultra-precision Lathe Using a Piezoelectric Actuator. International Journal of Machine Tools and Manufacture. Volume:37,Issue:4, April, 1997, pp.495~509</p><p>  8. Li Sheng-yi, Luo Bing, Dai Yi-fan, Pen

69、g Li. Design and Experiment of The Ultra Precision Twist-roller Friction Drive. ICAMT’99. 1999.</p><p>  基于摩擦傳動(dòng)的高分辨率和大沖程的微量進(jìn)給機(jī)械系統(tǒng)</p><p>  哈爾濱工業(yè)大學(xué)機(jī)電工程學(xué)院劉海濤,盧澤生</p><p><b>  摘

70、要</b></p><p>  在摩擦傳動(dòng)原理的基礎(chǔ)上,設(shè)計(jì)了一種通過壓電陶瓷結(jié)合螺桿軸和氣體靜壓引導(dǎo)的方式驅(qū)動(dòng)的長沖程和高分辨率的微量進(jìn)給系統(tǒng)。設(shè)計(jì)用來使加載裝置可以靈活的起落。利用有限元方法對(duì)柔性連接裝置對(duì)它的靜態(tài)特性進(jìn)行分析。對(duì)這種微量進(jìn)給系統(tǒng)的傳輸特性進(jìn)行了詳細(xì)的分析。</p><p>  關(guān)鍵詞: 摩擦傳動(dòng) 壓電傳動(dòng)裝置 柔性鉸鏈 有限元</p><

71、;p><b>  1.簡介</b></p><p>  光學(xué)在航空、航天、國防等領(lǐng)域中已得到廣泛應(yīng)用的行業(yè)。然而,生產(chǎn)的大型光學(xué)鏡面面臨著巨大的困難,效率較低、成本較高、增加在工藝設(shè)備的要求等。為了獲得更高的精度,高微位移分辨率超-先進(jìn)精密機(jī)床有待進(jìn)一步深入,以補(bǔ)償加工誤差。因此,微量進(jìn)給機(jī)制的設(shè)計(jì)已成為其關(guān)鍵技術(shù)之一。壓電陶瓷是一種近年來發(fā)展起來的新型的微量進(jìn)給機(jī)制。它所擁有的優(yōu)勢(shì),

72、比如體積小、功率大、分辨率高和高頻率響應(yīng),恒溫,不反彈,無粘性。因此它廣泛使用在微量進(jìn)給機(jī)制。如今,摩擦傳動(dòng)機(jī)制逐步被獲得和使用。</p><p>  2.微量進(jìn)給機(jī)制的結(jié)構(gòu)和工作原理</p><p>  微量進(jìn)給機(jī)制是由三個(gè)部分組成:摩擦傳動(dòng)裝置、滾珠螺桿及靜態(tài)壓力空氣軸承引導(dǎo)的方式。采用壓電陶瓷微量進(jìn)給機(jī)制阻滯,這些摩擦傳動(dòng)扭曲向上套筒和驅(qū)動(dòng)器</p><p>

73、  滾珠絲杠,從而帶動(dòng)空氣軸承引導(dǎo)地實(shí)現(xiàn)了微量進(jìn)給運(yùn)動(dòng)。 結(jié)構(gòu)如圖1所示。</p><p>  1, 軸承支架,2.活塞,3、活塞缸,4.精壓力空氣軸承導(dǎo)軌,5.滾珠絲杠,6. 壓電陶瓷底座,7.壓電陶瓷底座</p><p>  圖一:進(jìn)給機(jī)構(gòu)的結(jié)構(gòu)</p><p>  按照?qǐng)D2所示的進(jìn)給系統(tǒng)工作原理是,套筒連接著球摩擦傳動(dòng)螺桿、四個(gè)模塊是放置的兩側(cè)對(duì)稱的軸套。每一

74、塊由相應(yīng)的壓電陶瓷用于驅(qū)動(dòng),這種機(jī)制由于是由壓電陶瓷驅(qū)動(dòng),適用于夾持產(chǎn)生夾力。進(jìn)給機(jī)制的運(yùn)作,壓電陶瓷適用于夾持在同一陣營的摩擦傳動(dòng)驅(qū)動(dòng)都工作在特定塊整齊,從而使摩擦傳動(dòng)套筒連續(xù)的傳動(dòng)。</p><p>  圖1:(b)進(jìn)給系統(tǒng)圖片</p><p>  圖2:進(jìn)料機(jī)構(gòu)的運(yùn)行原理</p><p>  3.結(jié)合設(shè)計(jì)的可調(diào)機(jī)制</p><p>  

75、擰緊調(diào)節(jié)機(jī)制是一個(gè)需要在摩擦傳動(dòng)機(jī)構(gòu),它必須有足夠的 預(yù)緊力。典型的方法是鋼板彈簧預(yù)緊預(yù)緊機(jī)制,螺旋預(yù)緊 機(jī)制,氣壓預(yù)緊機(jī)制等。該擰緊機(jī)制本文設(shè)計(jì)的 靈活的平行四桿機(jī)構(gòu)。這是由壓電陶瓷droved供應(yīng)預(yù)緊力。該 預(yù)緊力可以改變控制的壓電陶瓷輸入電壓。 如圖3所示,利用有限元軟件分析的靜態(tài)特性。當(dāng)驅(qū)動(dòng)力的 壓電陶瓷是在最大500N的,靈活安排四桿機(jī)構(gòu)剛度,有限元分析 軟件,是K =24.15N/μm,以及最大應(yīng)力彈性鉸鏈?zhǔn)? 32.7Mp

76、a。如果沒有靈活失真 四桿機(jī)構(gòu)(即當(dāng)摩擦傳動(dòng)板塊跟硬性),輸出力的壓電 陶瓷將完全轉(zhuǎn)化為預(yù)緊通過靈活的四桿機(jī)構(gòu)的力量。</p><p>  4.驅(qū)動(dòng)特性分析的機(jī)制</p><p>  學(xué)習(xí)和掌握輻射源驅(qū)動(dòng)特性的機(jī)制以便采取適當(dāng)?shù)拇胧?,以改善整體性能,并提供了設(shè)計(jì)控制系統(tǒng)設(shè)計(jì)的基礎(chǔ)。</p><p><b>  4.1驅(qū)動(dòng)力矩</b></p

77、><p>  當(dāng)系統(tǒng)啟動(dòng)時(shí),有一個(gè)初步的轉(zhuǎn)動(dòng)慣量作為零件的質(zhì)量存在問題的結(jié)果。為了研究驅(qū)動(dòng)力矩,選擇摩擦傳動(dòng)套筒為主體的影響。根據(jù)該理論認(rèn)為,動(dòng)力學(xué)傳動(dòng)裝置的能量是一樣的火車前和轉(zhuǎn)換后,各部分的轉(zhuǎn)動(dòng)慣量,轉(zhuǎn)化為摩擦套。正因?yàn)槿绱?,我們可以得到轉(zhuǎn)換后的轉(zhuǎn)動(dòng)慣量。</p><p>  圖三:計(jì)劃的靜態(tài)特性分析結(jié)合的機(jī)制</p><p><b>  P:導(dǎo)程,m&l

78、t;/b></p><p><b>  R:套筒半徑,m</b></p><p>  Ms:滾珠螺桿質(zhì)量,kg</p><p>  Mt:套筒質(zhì)量,kg</p><p>  通過以上分析,我們得到的等效轉(zhuǎn)動(dòng)慣量的摩擦的袖子?,F(xiàn)在我們選擇摩擦的袖子一樣對(duì)象來討論這個(gè)驅(qū)動(dòng)力矩(動(dòng)力),是需要裝置時(shí)開始及其影響因素。下列

79、方程裝置時(shí)開始工作:</p><p>  J:等效轉(zhuǎn)動(dòng)慣量,kg。m2</p><p>  R:摩擦套筒半徑,m</p><p> ?。禾淄材Σ两羌铀俣?,rad/s2</p><p>  M:驅(qū)動(dòng)力矩,n。m</p><p>  F:驅(qū)動(dòng)力(摩擦片與套筒之間的摩擦力),n</p><p>  當(dāng)

80、系統(tǒng)啟動(dòng)時(shí),一個(gè)適宜的驅(qū)動(dòng)器偏轉(zhuǎn)組應(yīng)該被應(yīng)用于摩擦套,以使該套可以有一定的角加速度。該驅(qū)動(dòng)器偏轉(zhuǎn)組所產(chǎn)生的壓電輸出力陶瓷。由式2我們可以得到的等效轉(zhuǎn)動(dòng)慣量的系統(tǒng),半徑套的摩擦和驅(qū)動(dòng)器對(duì)壓電陶瓷(爆發(fā)摩擦塊之間的摩擦和摩擦套),是影響力機(jī)制啟動(dòng)的因素,所以我們應(yīng)該考慮各因素,以確保機(jī)制正常啟動(dòng)。</p><p><b>  4.2驅(qū)動(dòng)剛性</b></p><p>  剛

81、性的驅(qū)動(dòng)是其中的重要驅(qū)動(dòng)進(jìn)給機(jī)構(gòu)的特征之一?,F(xiàn)在我們將分析駕駛進(jìn)給機(jī)構(gòu)的剛度詳細(xì)的證明。不靈活的進(jìn)給機(jī)構(gòu)的級(jí)聯(lián)連接剛度的飼料的每一個(gè)片段的機(jī)制,這種機(jī)制有計(jì)算公式如下:</p><p>  K:進(jìn)刀機(jī)構(gòu)總體硬度</p><p><b>  Ky:壓電陶瓷剛度</b></p><p>  Kf:接觸剛度之間的接觸摩擦表面的摩擦剛性塊體和壓電陶瓷套

82、筒</p><p>  Ks:導(dǎo)螺桿軸向剛度</p><p>  Ks':從軸向剛度改變導(dǎo)螺桿的扭轉(zhuǎn)剛度</p><p><b>  Kn:螺母剛度</b></p><p><b>  Kb:軸向載荷</b></p><p>  Kh:軸承座機(jī)軸承架螺母的剛度<

83、/p><p>  Kd:螺母連接塊軸向剛度</p><p>  這是部分的分析和計(jì)算的剛性。</p><p>  4.2.1壓電陶瓷剛度</p><p>  本文用壓電陶瓷微定位是打印的WTYD0808055陶瓷生產(chǎn)的中國電子科技集團(tuán)公司先研究所。通過它的剛度測量實(shí)驗(yàn)15.15N /µm,如圖4</p><p>

84、  4.2.2接觸表面的接觸剛度、摩擦塊之間的套筒</p><p>  兩個(gè)物體互相接觸將在以前的某些行動(dòng)切向相對(duì)滑移過渡切向外部力量,這被稱為預(yù)位移。力和位移之間的比例關(guān)系,實(shí)際上反映了一個(gè)剛性的特點(diǎn)。相應(yīng)的剛性現(xiàn)在是:</p><p><b>  K:常數(shù)</b></p><p><b>  N:正壓力</b><

85、/p><p>  R:對(duì)摩擦半徑的理想化的球體表面</p><p>  很明顯的,特殊摩擦方程出發(fā),得到了齒輪傳動(dòng)系統(tǒng)、鉀是由實(shí)驗(yàn),r是常量,唯一的影響</p><p>  動(dòng)人的剛性因素常壓N .很明顯,更大的N、較大的接觸剛度K。</p><p>  圖4:剛度曲線的壓電陶瓷</p><p>  4.2.3 軸向剛度的

86、改變,從扭轉(zhuǎn)剛度的導(dǎo)螺桿</p><p>  傳動(dòng)鏈方面的需要進(jìn)行改造時(shí)統(tǒng)一計(jì)算它的剛性。因此,扭轉(zhuǎn)剛性必須轉(zhuǎn)換成下面的公式軸向剛度:</p><p>  是螺旋上升的鉛角,(°);</p><p>  D是絲桿直徑,mm;F是絲桿軸向力,N;M是絲桿輸入時(shí)刻,N·mm;</p><p>  是在絲桿和螺母之間的摩擦角

87、,(°);</p><p>  是對(duì)絲杠扭轉(zhuǎn)剛度,Nmm/rad;</p><p><b>  是絲杠扭轉(zhuǎn),rad</b></p><p>  P是絲桿長度,mm;</p><p>  G是絲桿剪切彈性模量,Mpa;</p><p><b>  是截面慣性矩,mm</b&

88、gt;</p><p>  L是兩個(gè)推力軸承的距離,mm</p><p>  螺母連接的剛性塊軸向可以得到的有限元分析。螺母支架的剛度和軸承塊是非常大的,可以予以辭退。其他部分可以得到剛性通過查找表和計(jì)算??傊?,通過演繹著驅(qū)動(dòng)進(jìn)給機(jī)構(gòu)的剛性方程,我們已經(jīng)找到了影響因素每一次駕駛駕駛部分,它提供了有關(guān)駕駛特性研究的基礎(chǔ)上進(jìn)一步造成剛性。</p><p>  5.進(jìn)刀機(jī)

89、構(gòu)的實(shí)驗(yàn)研究</p><p>  5.1實(shí)驗(yàn)系統(tǒng)的基礎(chǔ)</p><p>  如圖5所示,該實(shí)驗(yàn)系統(tǒng)是由送料機(jī)構(gòu),計(jì)算機(jī),壓電陶瓷驅(qū)動(dòng)器其電源供應(yīng)器及電感測微儀。</p><p>  圖5:基礎(chǔ)的實(shí)驗(yàn)系統(tǒng)</p><p>  本文采用一種基于平均控制曲線模型建立開環(huán)控制模型。首先,實(shí)驗(yàn)曲線測量壓電陶瓷控制電壓之間的關(guān)系和滑動(dòng)運(yùn)輸距離。利用Mat

90、lab軟件以適應(yīng)線,以三次代數(shù)多項(xiàng)式擬合線,線擬合誤差,是一樣的顯示在圖6,由此我們得到相應(yīng)的關(guān)系表達(dá)式的控制電壓和距離和因此控制距離的進(jìn)給機(jī)制。</p><p>  圖6:適合以三次代數(shù)多項(xiàng)式</p><p>  控制電壓和距離的關(guān)系式公式7所示</p><p>  x是輸出的距離,µm;</p><p><b>  u

91、控制電壓,V。</b></p><p>  5.2實(shí)驗(yàn)研究系統(tǒng)分辨率</p><p>  如圖7,壓電陶瓷具有一定的伸長。就在這個(gè)時(shí)候,距離工作表微0.15µm。 然后一步拉伸逐漸在此基礎(chǔ)上,保持1.5在每一時(shí)刻。采樣時(shí)間是控寄存器。這分辨率曲線可以獲得實(shí)踐的距離,通過測量微進(jìn)給機(jī)構(gòu)使用的電感測微儀。</p><p>  圖7:距離分辨率曲線的

92、進(jìn)給機(jī)制</p><p><b>  6.結(jié)論</b></p><p>  微進(jìn)給機(jī)構(gòu)一步用長征、高分辨率的設(shè)計(jì),并在此基礎(chǔ)上從以下結(jié)論分析得出:</p><p>  1.結(jié)合機(jī)理的基礎(chǔ)上,設(shè)計(jì)了壓電陶瓷靈活的鐵鉸鏈和分析了它靜態(tài)特性,采用有限元分析軟件;</p><p>  2.分析了起動(dòng)轉(zhuǎn)矩的微進(jìn)給機(jī)構(gòu)的等效轉(zhuǎn)動(dòng)慣量

93、計(jì)算;分析了駕駛剛度特性的微進(jìn)給機(jī)構(gòu),發(fā)現(xiàn)其影響因素;</p><p>  3. 微進(jìn)給機(jī)構(gòu)可以達(dá)到300mm,分辨率小于0.05μm少。</p><p><b>  參考文獻(xiàn)</b></p><p>  1.Seugng-Bok Choi, Sang-Soo Han. Position Control System Using ER Clut

94、ch and Piezoactuator. Pro. of SPIE, 2003, 5056: 424~431 </p><p>  2.Suzuki H, Kodera S, Mabkawa S, et al. Study on Precision Grinding of Micro a Spherical Surface. JSPE, 1998, 64(4):619~623.</p><p

95、>  3.Arrasmith S. R, Kozhinova I A, Gregg L L et al. Details of The polishing Spot in Magnetorheological Finishing(MRF).Proceedings of SPIE-the International Society for OpticalEngineering,2001,Vol.3782:92~100.</p&

96、gt;<p>  4.Atherton P D, Xu Y, McConnell M. New X-Y Stage for Precision Positioning and Scanning. SPIE, 1996, 2865:15~20. </p><p>  5.Liu Yung -Tien, Toshiro Higuchi, Fung Rong-Fong. A Novel Precision

97、 Positioning Table Utilizing Impact Force of Spring-Mounted Piezoelectric Actuator. Precision Engineering, 2003, 27:14221 </p><p>  6.Lobontiu N, Goldfarb M, Garcia E. A Piezoelectric Drive Inchworm Locomoti

98、on Device. Mechanism and Machine Theory, 2001, 36: 425~443. </p><p>  7.A. A. Elmustafa, Max G. Lagally. Flexural-hinge Guided Motion Nanopositioner Stage for Precision Machining: Finite Element Simulations.

99、 Precision Engineering, 2001, 25: 77~81 </p><p>  8.Jaehwa Jeong, Young-Man Choi, Jun-Hee Lee. Design and Control of Dual Servo Actuator for Near Field Optical Recording System. Pro. of SPIE, 2005, 6048: 1~8

100、 </p><p>  9.Kim Jeong-Du, Nam Soo-Ryong. Development of a Micro-depth Control System for an Ultra-precision Lathe Using a Piezoelectric Actuator. International Journal of Machine Tools and Manufacture. Volu

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論