版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> Available online at www.sciencedirect.com</p><p> Physics Procedia 25 (2012) 1732 – 1737</p><p><b> 中文3380字</b></p><p> 2012 International Conference on So
2、lid State Devices and Materials Science</p><p> Design and Simulation of the Ultrasonic Rangefinder Based on Micro-controller</p><p> SHI Yanbina, LIU Hong, HAO Xue a</p><p> Avi
3、ation University of Air force, Changchun, 130022, China</p><p><b> Abstract</b></p><p> This paper describes the principle and techniques of ultrasonic rangefinder based on micro-c
4、ontroller AT89C2051. The performance characteristics of the ultrasonic rangefinder are studied theoretically and experimentally. The primary objective of the study was to determine the hardware principle circuit and the
5、 main software design, the computed simulation by Pspice is provided for the key part of the hardware circuit. In this paper it is demonstrated that this type of the ultrasonic rangefinder</p><p> © 20
6、12 Published by Elsevier B.V. Selection and/or peer-review under responsibility of Garry Lee</p><p> Open access under CC BY-NC-ND license.</p><p> Keywords: Ultrasonic rangefinder; DDS; signa
7、l source; micro-controller</p><p> 1. Introduction</p><p> The ultrasonic has many characteristics such as the strong directive property, the slow energy consumption, the long propagation dist
8、ance in the medium and so on. Because each medium presents certain impedance to the propagation for the ultrasonic when the ultrasonic affects to two medium interfaces, if the difference of the acoustic impedance b
9、etween these two medium is very big, the ultrasonic can reflect from the contact surface, thus the ultrasonic can be used in the</p><p> 415Pa·s/m, and the acoustic impedance rate of
10、 the water is 1.48×106 Pa·s/m, the acoustic impedance rate</p><p> of the steel is 4.5×107 Pa·s/m, therefore the distance gauge and the position measuring instrument and so on between
11、the air and steel, or between the air and the water surface all may realize through the</p><p> E-mail address: shiyanbin_80@163.com.</p><p> 1875-3892 © 2012 Published by Elsevier B.V. S
12、election and/or peer-review under responsibility of Garry Lee</p><p> Open access under CC BY-NC-ND license. doi:10.1016/j.phpro.2012.03.303</p><p> ultrasonic. The principle of the rangefinde
13、r is the ultrasonic launch some direction ultrasonic wave, at the same time start time, the ultrasonic propagates in the air, bumps into the obstacle to reflect on the way, the ultrasonic wave receiver receives the refle
14、cted wave, and stops time immediately, records the time according to the timer, the distance between the emission point and obstacle can be calculated. In this paper, takes the AT89C2051 one-chip micro-controller as the
15、core, utilizes th</p><p> 2. Systematic characteristics describe and technical feature</p><p> The main function of the rangefinder is carries on the distance measurement in the 6m range. Its
16、characteristic is: its electric circuit is simple, and the volume is small; Used the micro-controller technology, it has high reliability and measuring accuracy; it adopts the loss consumed power component, which reduces
17、 the breakdown formation rate; it takes the liquid crystal digital display, which easy to use.</p><p> The main technical performances of the rangefinder:</p><p> x Measurement range: 0.7~6m;
18、</p><p> x Measuring error: δ≦1.7%;</p><p> x Resolution: 0.01m;</p><p> x Main hardware: AT89C2051 micro-controller, ultrasonic detecting head (UCM-R40 and UCM-T40), characte
19、r liquid crystal display module (TR0802B).</p><p> 3. System design and improving</p><p> Fig. 1.system structural block diagram</p><p> The structural block diagram of the syste
20、m is shown as Fig. 1. When switching on the working power, the micro-controller data processing unit initializes the square wave which forms 40 KHz, push the PTT button, it transmits the sinusoidal wave; the er begins to
21、 count at the same time, the ultrasonic carries on power amplification through the power amplifier, launched by the ultrasonic launcher. When it meet the reflector, the reflector reflects the return wave echo at once, th
22、e receiver receives</p><p> S = v(t-t0 )</p><p><b> 2</b></p><p><b> (1)</b></p><p> The transmit speed of the ultrasonic in the air is:<
23、/p><p><b> v=v0</b></p><p><b> 1+T / 273</b></p><p><b> (2)</b></p><p> 3.1. Hardware design</p><p> The system hardw
24、are architecture divides into four parts: 5V power source; micro-controller circuit for data processing and demonstration part; Ultrasonic transmitter part; receiver and amplifier unit. Fig. 2 shows the circuit diagram o
25、f the ultrasonic rangefinder based on micro-controller.</p><p><b> AN1</b></p><p><b> M1</b></p><p><b> RT0802B</b></p><p><b&
26、gt; ?? ?? ??</b></p><p><b> GND</b></p><p><b> U1C</b></p><p><b> 5 6</b></p><p><b> 4069</b></p><
27、;p><b> U1B</b></p><p><b> 3 4</b></p><p><b> 4069</b></p><p><b> U1A</b></p><p><b> 1</b></p>
28、<p><b> 4069</b></p><p><b> U1E</b></p><p><b> A1</b></p><p><b> SEND</b></p><p> R1 ??? ?</p&g
29、t;<p><b> 51</b></p><p><b> VCC</b></p><p><b> C1</b></p><p><b> 0.1uF</b></p><p><b> RW1</b><
30、;/p><p><b> 10K</b></p><p><b> ?????</b></p><p><b> U1D</b></p><p> 9 8 </p><p><b> 11</b></p>
31、;<p><b> 4069</b></p><p><b> U1F</b></p><p><b> GND</b></p><p><b> VCC</b></p><p><b> 4069 13</b&g
32、t;</p><p><b> 4069</b></p><p><b> RS R/W</b></p><p><b> E DB0</b></p><p><b> U2</b></p><p> 11
33、 P3.7</p><p> 12 P1.0(AIN0)</p><p> GND (T1)P3.5</p><p><b> GND</b></p><p><b> 10</b></p><p><b> 9</b&g
34、t;</p><p><b> C3 15P</b></p><p><b> C5</b></p><p><b> 33P </b></p><p><b> R2 C6</b></p><p><b>
35、 VCC</b></p><p><b> R14</b></p><p> DB1 13</p><p> DB2 14</p><p> P1.1(AIN1)</p><p> (T0)P3.4 8</p>
36、;<p><b> 7</b></p><p><b> GND</b></p><p><b> 100K</b></p><p><b> R4</b></p><p><b> 10K</b></p
37、><p><b> 300K</b></p><p><b> C8</b></p><p><b> 100P</b></p><p><b> U3D</b></p><p><b> A2</b>&
38、lt;/p><p><b> RECEIVE</b></p><p> DB3 15</p><p> DB4 16</p><p><b> P1.2</b></p><p><b> P1.3</b></p
39、><p><b> P1.4</b></p><p> (INT1)P3.3</p><p> (INT0)P3.2</p><p><b> XTAL1</b></p><p> 6 C4</p><p>
40、 5 15P</p><p><b> U3C</b></p><p><b> 10uF</b></p><p><b> U3A</b></p><p><b> C10</b></p><p
41、><b> 2</b></p><p><b> 12</b></p><p><b> R17 14</b></p><p> DB5 17</p><p> DB6 18</p><p><b&
42、gt; P1.5</b></p><p> XTAL2 4</p><p><b> 3</b></p><p><b> CY1</b></p><p><b> 9 1</b></p><p> 8
43、3 100P</p><p><b> 6.8K 13</b></p><p><b> VCC</b></p><p> DB7 19</p><p><b> 20</b></p><p><b&
44、gt; C2</b></p><p><b> P1.6</b></p><p><b> P1.7</b></p><p><b> VCC</b></p><p><b> AT89C2051</b></p><
45、;p> (TXD)P3.1 (RXD)P3.0 2</p><p> RST/VPP 1</p><p><b> AN2</b></p><p><b> VCC</b></p><p><b> 10</b><
46、;/p><p><b> LM324</b></p><p><b> R8</b></p><p><b> 10K</b></p><p><b> LM324</b></p><p><b> R15</
47、b></p><p><b> 300K</b></p><p><b> R16</b></p><p><b> 6.8K</b></p><p><b> LM324</b></p><p><b>
48、 +9V</b></p><p> U4 78L05</p><p> 1 Vin</p><p><b> GND</b></p><p><b> +5V</b></p><p><b> 0.1uF<
49、;/b></p><p><b> 3</b></p><p><b> VCC VCC</b></p><p><b> C12</b></p><p><b> 1uF</b></p><p><b>
50、 D1</b></p><p><b> R5</b></p><p><b> 10K</b></p><p><b> GND</b></p><p><b> R6</b></p><p><b>
51、; 10K</b></p><p><b> 1</b></p><p><b> U5A</b></p><p><b> 2</b></p><p><b> 3</b></p><p><b>
52、 R7</b></p><p><b> 10K</b></p><p><b> GND</b></p><p><b> U3B</b></p><p><b> CN1</b></p><p><b
53、> 1</b></p><p><b> 2</b></p><p><b> C11</b></p><p><b> 47uF</b></p><p><b> GND</b></p><p><
54、;b> C7</b></p><p><b> 10uF</b></p><p><b> 1N4148</b></p><p><b> GND</b></p><p><b> TLC393</b></p>&
55、lt;p><b> C9</b></p><p><b> 100P</b></p><p><b> GND</b></p><p><b> R3</b></p><p><b> 100K</b></p&g
56、t;<p><b> VCC</b></p><p><b> VCC</b></p><p><b> R9</b></p><p><b> 10k</b></p><p><b> 5</b></p
57、><p> R10 6</p><p><b> 10k</b></p><p><b> GND</b></p><p> 7 2.5V</p><p> LM324 C13</p><p&g
58、t;<b> 0.1u</b></p><p><b> GND</b></p><p><b> R11</b></p><p><b> 10K</b></p><p><b> 5</b></p><
59、;p> R12 6</p><p><b> 10K</b></p><p><b> U5B</b></p><p><b> 7</b></p><p><b> R13</b></p><p>
60、;<b> 10K</b></p><p><b> TLC393</b></p><p><b> GND</b></p><p> Fig. 2. circuit diagram of the ultrasonic rangefinder based on micro-controller
61、</p><p> The power unit uses three terminal integration regulator 78L05, which provides the stable +5V voltage for the micro-controller circuit and the amplifier. The micro-controller circuit uses the low v
62、oltage, high performance CMOS 8 machine AT89C2051 which American ATMEL Corporation produces, it is compatible with the industry standard MCS-51 instruction and the pin, thus is one kind of function formidable micro contr
63、oller, has provided a highly nimble effective solution to the very many embedded co</p><p> RT0802B is the display unit; the key AN1 is used for control the back light of the RT0802B; RW1 is used for adjust
64、 the demonstration contrast gradient; the key AN2 is used for control the work switch condition of the rangefinder.</p><p> The transmission circuit is composed by the CD4069 phase reverser, this circuitry
65、is simple (see also schematic diagram), U1B and U1A, U1E and U1F joining-up enhance the output current; the output voltage phases of the 4th, 2nd pin and 10th, 12th pin are opposite. Thus, the transmitter may obtain the
66、peak value is the 9V AC sine signal (the Q value of the ultrasonic wave transmitter is very high, only the fundamental wave signal has an effect, the higher harmonic does not have influence), which </p><p>
67、 The pre-amplifier selects the general low power consumed integration operational amplifier LM324, receives the weak signal by the ultrasonic wave acceptor and carries on the enlargement.U3B outputs the</p><p&
68、gt; 2.5V voltage as the voltage follower to provide the bias for other amplifiers; Considered the output impedance of the ultrasonic receiver is high, U3D design as the voltage follower to enhance the input impedance of
69、 the amplifier circuit; U3A is composed the active bandpass filter, its center frequency is</p><p> 40KHz and the gain is 20, it may filter each kind of unwanted signal; The U3C composites the inverting amp
70、lifier, its gain is 10. So the total gain of the receiver is 200. The LM393 low power consumed two- circuit double pole comparator is the echo shaping unit, it reshapes the received signal, and outputs the square-wave to
71、 the micro-controller.</p><p> Where, T is the absolute temperature, v0=331.4m / s , S is the probing range, v is propagation</p><p> velocity of the ultrasonic. Because transmissio
72、n speed of the ultrasonic is influenced by the temperature</p><p> and the medium. t is the recording time, t0</p><p> is delay of the system. If the rangefinder precision request is</p>
73、<p> high, it may be adjusted through the temperature or the experience compensation measure. If the precision</p><p> is not very high for rangefinder, generally it can be 340m/s.</p><p&
74、gt; 3.2. Hardware simulation</p><p> Using the simulation method while design the electric circuit, which is advantageous to optimized design and debugging. After completes the initially integrated circuit
75、 design, the hardware electric circuit debugging work mainly concentrates on the active bandpass filter. In order to debug conveniently, in the design first used Pspice to carry on the simulation to this electric circuit
76、, by determined the concrete parameter, enhances the system performance, and simplifies the debugging works. Fig</p><p> 3.3. Software design</p><p> The software include two parts, they are t
77、he master routine and the interrupt service, as shown in Fig 4. The master routine completes the initialization, transmit the ultrasonic and the control of the receive sequence. The timing interrupt service subroutine co
78、mpletes the ultrasonic echo receiving; the external interrupt service subroutine mainly complete the time value reading, distance computation, result work and so on.</p><p> x The 40kHz pulse production an
79、d the ultrasonic transmitting</p><p> The ultrasonic sensor in the rangefinder uses the piezoelectricity ceramics sensor UCM40, its working voltage is the 40kHz pulse signal, which is generated by the follo
80、wing procedure stored in the micro- controller.</p><p> Fig. 3.Design electric circuit in PspiceFig. 4. Simulati on result in Pspice</p><p> Fig. 5 Software flow chart</p><p> T
81、he input terminal of the range-measuring circuit connects to the P3.0 port of the micro-controller. After carries out above procedure, the micro-controller outputs the 40kHz pulse signal in the P3.0 port, and this signal
82、 is enlarged by LM4069, drivers the ultrasonic detecting head UCM40T, sends out the</p><p> 40kHz pulse ultrasonic, and keeps 200ms continually.</p><p> x The ultrasonic wave receiving and pr
83、ocessing</p><p> The receiving detecting head uses the UCM40R, which changes the ultrasonic modulation pulse to the alternating voltage signal, and then add to U2B after the operational amplifier U2A.
84、U2B and the periphery electric circuit composes the bandpass filter, which carries on the filter, reshaping processing to the receive signal. The center frequency of the signal is , delivers to micro-controller.</p&g
85、t;<p> Starts the internal timer T0 of micro-controller when starts the transmission circuit, and receives the reflected wave using the timer counting function recording ultrasonic wave launch time the time. When
86、 the rangefinder receives the reflected ultrasonic wave, the out-port of the accepting circuit has a negative jump, produces an interrupt request signal in INT0 or the INT1, the micro-controller responds the external int
87、errupt request, carries out the external interrupt service subroutine, read</p><p> x Improve the measure precision</p><p> Because of the influence by the temperature to the speed and the ti
88、me, the precision of this system is limited. So we can improve the design according to paper [5]. The propagation velocity value has made revision according to the experience of the ultrasonic wave in the air; simultaneo
89、usly the method which simulates the software uses in the component parameter the determination. The result indicated that, these measures powerfully increased the accuracy ultrasonic distance measuring.</p><p&
90、gt; 4. Measuring and statistics</p><p> In this design uses the transmission characteristic of the ultrasonic wave, auxiliary by AT89C2051 micro-controller, has simulated with Pspice to the hardware major
91、component, no matter from simulation result, looked from the final whole test, all has achieved the satisfactory effect. Table 1 is vertical under</p><p> the conventional condition by the air to the follow
92、ing three medium launch, the demarcation value respectively is 3.0m and 6.0cm, separately surveys the mean value which 50 times obtains.</p><p> Table 1. Measuring and statistics</p><p> 5. Co
93、nclusion</p><p> This system finally may maintain the precision ranges in 0.7 to 6 meters, has met the anticipated design requirements and the goal. As a result of the acoustical power rate limit, its maxim
94、um range has been received the limit, if needs to increase the range, may realize through the enlarge acoustical power rate method, this design available carries the ultrasonic rangefinder in the automobile and the freig
95、hter vehicle/ship.etc..</p><p> References</p><p> [1] WANG Jing Zhong, ZHANG Chao Jie. Design of ultrasonic distance measurement instrument with the function of real-time voice broadcast base
96、d on AT89S51. Microcomputer & Its Applications, 2010;04, p. 28-31.</p><p> [2] ZHANG Li-hong, CHEN Bo-jun. A Low-cost System Design for Ultrasonic Distance Measurement Instrument. Control and</p>
97、<p> Instruments in Chemical Industry, 2010;37,08, p. 49-52.</p><p> [3] ZHU Shi-hu, HE Pei-zhong, WANG Li-wei. Design of Ultrasonic Tester Based on the AT89S52. Instrumentation</p&
98、gt;<p> Technology, 2009; 06, p. 22-24.</p><p> [4] WEI Sui-lin. Development of the digital ultrasonic rangefinder. Electronic Design Engineering, 2009; 10, p. 22-24.</p><p> [5] ZHANG
99、 Tong-huai. Design and Fabrication of Ultrasonic Rangefinder. Instrumentation Technology, 2008; 08, p. 20-22.</p><p> [6] Ye Xiaodong. Design and manufacture of ultrasonic distance measurement instrument. F
100、oreign Electronic Measurement</p><p> Technology, 2008; 11, p.53-56.</p><p> [7] YAN Huai-long. A Device Design of Water Level Measurement Based on Ultrasonic. Mechanical & Electrical Engi
101、neering</p><p> Technology, 2007;03, p. 31-33.</p><p> [8] Liu ChengAn Sun Tao. Development of intelligent ultrasonic meter. Microcomputer Information, 2007;02, p. 101-103.</p><p>
102、; [9] WANG Rui. Research and design of ultrasonic rangefinder based on singlechip. Electronic Instrumentation Customer, 2006;</p><p> 13,04, p. 58-60.</p><p> 基于微機(jī)控制器的超聲波測距設(shè)計(jì)</p><p
103、><b> 摘要</b></p><p> 本文介紹了基于微機(jī)控制器AT89C2051的超聲波測距儀的技術(shù)和原理。它從理論和實(shí)驗(yàn)兩個方面研究了超聲波測距儀的性能特點(diǎn)。本研究的主要目的是確定硬件電路原理和軟件設(shè)計(jì)要點(diǎn),通過PSPICE的計(jì)算機(jī)仿真提供了硬件電路的關(guān)鍵部分。在本文中,它表明這種類型的超聲波測距儀在實(shí)際中是可用的。</p><p> 關(guān)鍵詞:超聲
104、波測距儀;DDS信號源;微機(jī)控制器;</p><p><b> 介紹</b></p><p> 超聲波具有諸多特點(diǎn),例如指向性強(qiáng),能量消耗緩慢,在介質(zhì)中可以傳播較長的傳播距離等。超聲波在兩個不同的介質(zhì)中傳播時,因?yàn)槊恳环N不同的介質(zhì)都有自己一定的特定的波阻抗,如果這兩種介質(zhì)之間的波阻抗的差異是非常大的,超聲波就可以從接觸表面發(fā)生發(fā)射,因此,超聲波可以利用該特點(diǎn)進(jìn)行距
105、離的測量。在常溫下,空氣的波阻抗率是415PA·S / M,水的波阻抗率1.48×106PA·S / M,鋼的波阻抗率是4.5×107PA·S / M。因此,測距儀和位置測量儀或者其他諸如此類的工具等在空氣和鋼之間,或在空氣和水表面之間的距離的測量都可以通過超聲波的這些特點(diǎn)來實(shí)現(xiàn)。測距儀的原理就是利用超聲波朝特定的方向發(fā)射出超聲
106、波信號,同時開始計(jì)時,超聲波在空氣中傳播,碰到障礙物后會發(fā)生反射,超聲波接收器接收到反射波,并立即停止時間的計(jì)數(shù),根據(jù)計(jì)時器上記錄的時間,超聲波的發(fā)射點(diǎn)和障礙物之間的距離就可以被計(jì)算出來。在本文中,以AT89C2051單片微機(jī)控制器為核心,利用超聲波的上述諸多的特點(diǎn),設(shè)計(jì)出的一個成本低,精度高,數(shù)字顯示的可以用于測量距離測距儀。</p><p> 二、系統(tǒng)的特點(diǎn)和技術(shù)特征的描述</p><p
107、> 該測距儀的主要功能是在6m的范圍內(nèi)進(jìn)行距離的測量。它的特點(diǎn)是:設(shè)計(jì)電路簡單,并且體積?。徊捎梦C(jī)控制器技術(shù),而且它具有很高的可靠性和測量精度;采用了能降低故障發(fā)生率并且消耗功率和損耗較低的元件,同時以字符液晶數(shù)字的顯示方式顯示距離,便于使用。</p><p> 該測距儀主要技術(shù)性能有:</p><p> 1.測量范圍:0.7~6m ;</p><
108、;p> 2.測量誤差:δ≦1.7%;</p><p> 3.分辨率:0.01M;</p><p> 主要硬件:AT89C2051微控制器,超聲波探測頭(UCM-R40和UCM-T40),字符液晶顯示模塊(TR0802B)。</p><p> 三、系統(tǒng)的設(shè)計(jì)和改進(jìn)</p><p><b> 圖1系統(tǒng)的結(jié)構(gòu)框圖</
109、b></p><p> 系統(tǒng)的結(jié)構(gòu)框圖如圖1所示。當(dāng)接通工作電源開始工作時,微機(jī)控制器的數(shù)據(jù)處理單元初始化為40 kHz的方波,此時按下PTT按鈕,它將會發(fā)射出正弦波信號;與此同時ER裝置開始同步計(jì)時,超聲波經(jīng)過功率放大器的功率放大之后,由超聲波發(fā)射器發(fā)射出去。當(dāng)它遇到障礙物時會發(fā)生,反射波發(fā)射回來的時候,由接收器接收到反射信號,然后反射信號經(jīng)過濾波,放大并且整理波次順序后,發(fā)送到微機(jī)控制器的中斷接口,在
110、接收到信號之后微機(jī)控制器便停止計(jì)時器的計(jì)時。此后測距儀便根據(jù)超聲波的發(fā)射和接收到回波信號的時間計(jì)算出超聲波發(fā)射點(diǎn)和障礙物點(diǎn)之間的距離;具體的距離計(jì)算公式如下:</p><p> 式中,S是超聲波發(fā)射和反射之間的探測的范圍,t是計(jì)時器上記錄的時間,to是系統(tǒng)延遲時間,v是發(fā)射出去的超聲波在空氣中的傳播速度。</p><p> 發(fā)射出去的超聲波在空氣中的速度計(jì)算公式如下:</p>
111、;<p> 式中,v是發(fā)射出去的超聲波在空氣中的傳播速度,T是絕對溫度,vo=331.4m/s。由于超聲波的傳播速度會受溫度和傳播介質(zhì)的影響,如果測距精度要求很高,它可以通過溫度或經(jīng)驗(yàn)補(bǔ)償措施進(jìn)行一些調(diào)整。如果精度不是很高的測距儀,一般可以取340m/s。</p><p><b> ?。ㄒ唬┯布O(shè)計(jì)</b></p><p> 該系統(tǒng)的硬件結(jié)構(gòu)可以分為
112、四個部分:</p><p><b> 1.5V電源;</b></p><p> 2.微機(jī)控制器電路的數(shù)據(jù)處理和顯示部分;</p><p> 3.超聲波的發(fā)射和接收部分;</p><p><b> 4.放大器單元。</b></p><p> 圖2顯示了基于單片機(jī)控制的
113、超聲波測距儀電路圖。</p><p> 圖2基于單片機(jī)控制的超聲波測距儀電路圖</p><p> 該系統(tǒng)的動力裝置采用能夠?yàn)槲C(jī)控制器電路和放大器提供穩(wěn)定的5V直流電壓的三端集成穩(wěn)壓器78L05。微機(jī)控制器電路采用由美國愛特梅爾公司生產(chǎn)的低電壓,高性能的CMOS 8單片機(jī)AT89C2051,它與一般工業(yè)上標(biāo)準(zhǔn)的MCS-51的指令和引腳能夠兼容,因而是一種功能強(qiáng)大的微機(jī)控制器,它也為很多
114、嵌入式控制應(yīng)用提供了一個高度靈活而且有效的解決方案。在本設(shè)計(jì)中,它可以產(chǎn)生40kHz的發(fā)射信號,接收超聲波的回波信號,而且可以根據(jù)內(nèi)部計(jì)時器記錄的傳播時間來計(jì)算距離,并且控制RT0802B字符液晶顯示模塊顯示出超聲波發(fā)射點(diǎn)和障礙物之間的距離。</p><p> RT0802B是顯示單元。它的核心關(guān)鍵AN1用于控制RT0802B的背光;RW1用于調(diào)整顯示的對比度;核心關(guān)鍵AN2用于控制測距儀的工作開關(guān)條件。<
115、;/p><p> 超聲波發(fā)射電路由CD4069反相器構(gòu)成,該電路結(jié)構(gòu)簡單(見示意圖),U1B和U1A,U1E和U1F的連接可以增強(qiáng)輸出電流;在第4引腳,第2引腳和第10引腳,第12引腳處的輸出電壓是相反的。也正是因此原因,發(fā)射器可以獲得最高峰值為9V的正弦交流信號(超聲波發(fā)射器的Q值很高,而只有基波信號會受到影響,諧波信號沒有影響),從而提高發(fā)射功率。</p><p> 前置放大器的選擇一
116、般選取的是低功耗集成運(yùn)算放大器LM324,它是一種可以接收微弱的超聲波信號并且進(jìn)行放大的超聲波信號接收器。U3B可以輸出2.5V的電壓作為電壓輸出器為其他放大器提供需要的電壓;而考慮到超聲波接收器的輸出阻抗高,U3D設(shè)計(jì)出來作為電壓輸出器來提高放大器電路的輸入阻抗;U3A是用來組成有源帶通濾波器的,它的中心頻率為40kHz,增益為20,它可以過濾各種無用的信號;U3C是由復(fù)合材料構(gòu)成的反相放大器,它的增益為10。由此超聲波接收器的總增益
117、為200。LM393低功耗損耗的雙回雙極比較器可以構(gòu)成回波整形單元,它可以將所接收的信號進(jìn)行整理整形,并且向微機(jī)控制器輸出方波信號。</p><p><b> (二)硬件仿真</b></p><p> 利用軟件仿真的方法,可以用來設(shè)計(jì)電路,并且有利于電路的優(yōu)化設(shè)計(jì)與參數(shù)的最終調(diào)試。在完成最初的集成電路設(shè)計(jì)圖之后,硬件電路的調(diào)試工作主要集中在有源帶通濾波器部分。為了
118、調(diào)試的方便,首先在PSPICE上設(shè)計(jì)出這個電路并且進(jìn)行模擬,以確定具體的參數(shù)要求,不但可以提高系統(tǒng)的性能,還大大簡化了調(diào)試工作。圖3是仿真電路圖,圖4幅頻特性的仿真結(jié)果,從圖中可以看出,通過選擇合適的組件,該聲波放大器的參數(shù)已經(jīng)非常理想化,它的中心頻率正是超聲波在工作時的頻率40kHz。</p><p><b> 圖3仿真電路圖</b></p><p> 圖4幅頻
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文翻譯--超聲波測距
- 外文翻譯--超聲波測距系統(tǒng)
- [雙語翻譯]超聲波測距外文翻譯--低成本超聲波測距系統(tǒng)的設(shè)計(jì)考慮和性能
- [雙語翻譯]超聲波測距外文翻譯--低成本超聲波測距系統(tǒng)的設(shè)計(jì)考慮和性能(英文)
- 外文翻譯---超聲波測距儀
- 外文翻譯超聲波測距儀
- 超聲波測距儀外文翻譯
- 外文翻譯超聲波測距儀
- 2013年超聲波測距外文翻譯--低成本超聲波測距系統(tǒng)的設(shè)計(jì)考慮和性能
- 超聲波電機(jī)驅(qū)動控制器畢業(yè)設(shè)計(jì)(含外文翻譯)
- [雙語翻譯]超聲波測距外文翻譯--低成本超聲波測距系統(tǒng)的設(shè)計(jì)考慮和性能.中英全
- 超聲波測距儀系統(tǒng)設(shè)計(jì)外文翻譯
- 超聲波測距儀外文獻(xiàn)翻譯
- 2013年超聲波測距外文翻譯--低成本超聲波測距系統(tǒng)的設(shè)計(jì)考慮和性能.DOCX
- 超聲波測距儀外文資料翻譯
- 畢業(yè)論文外文翻譯-超聲波測距
- 超聲波測距外文翻譯[中文5400字]
- 超聲波測距外文翻譯[中文5400字]
- 外文資料翻譯---超聲波測距儀
- 超聲波傳感器及超聲波測距
評論
0/150
提交評論