2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩4頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p><b>  附錄一 外文文獻</b></p><p>  Slope Stability Analysis with</p><p>  Nonlinear Failure Criterion</p><p>  Introduction</p><p>  The determination of

2、the slope stability is a very important issue to geotechnical engineers. Many researchers have attempted to develop and elaborate the methods for slope stability evaluation. The proposed methods in the past for stability

3、 analysis may be classi?ed into the following four categories: ~1! the limit equilib-rium including the traditional slices method, ~2! the characteristic line method,~3!the limit analysis method including upper and<

4、/p><p>  lower bound approaches, and~4! the ?nite element or ?nite difference numerical techniques. Among them, the slices method has almost dominated the geotechnical profession for estimating the stability o

5、f soil and rock slopes. This is due to the fact that the slices method is very simple, cumulated on the use of the method, and the method is the most</p><p>  known and widely accepted by practicing engineer

6、s.</p><p>  Until now, a linear MC failure criterion is commonly used in the limit analysis of stability problems. The reason is probably that a linear MC failure criterion can be expressed as circles. This

7、characteristic makes it possible to approximate the circles by a failure surface, which is a linear function of the stresses in the stress space for plane strain problems. Thus, based on the upper</p><p>  a

8、nd lower bound theorems, formulations of the stability or bearing capacity problems are linear programming problems.</p><p>  However, experiments have shown that the strength envelope of geomaterials has th

9、e nature of nonlinearity ~Hoek 1983; Agaret al. 1985; Santarelli 1987!. When applying an upper bound theorem to estimate the in?uences of a nonlinear failure criterion on bearing capacity or stability, the main problem,

10、which many researchers have encountered, is how to calculate the rate of work done by external forces and the rate of energy dissipation along</p><p>  velocity discontinuities. Suitable methods for solving

11、this problem can be mainly classi?ed into two types. The ?rst type of method is using a variational calculus technique. Baker and Frydman ~1983! applied the variational calculus technique to derive the governing equation

12、s for the bearing capacity of a strip</p><p>  footing resting on the top horizontal surface of a slope. Zhang and Chen~1987!converted the complex differential equations obtained using the variational calc

13、ulus technique into an initial value problem and presented an effective numerical procedure, called an inverse method, for solving a plane strain stability problem using a general nonlinear failure criterion. They gave n

14、umerical results of stability factors of a simple in?nite homogenous slope without surcharge. The second type of method </p><p>  failure surfaces which are tangent to an exceed the actual nonlinear failure

15、surface, together with utilizing the previously calculated linear stability factors, NL, given by Chen ~1975!.</p><p>  This paper develops an improved method using a ‘‘generalized tangential’’ technique. Th

16、is method employs the tangential line ~a linear MC failure criterion!, instead of the actual nonlinear failure criterion, to formulate the work and energy dissipation.</p><p>  A ‘‘Generalized Tangential’’ T

17、echnique</p><p>  A limit load computed from a linear failure surface, which always circumscribes the actual nonlinear failure surface, will be an upper bound value on the actual limit load ~Chen 1975!. This

18、 is due to the fact that the strength of the circumscribing the actual nonlinear failure surface is equal to or larger than that of the actual failure surface. In the present analysis, a tangential line to a nonlinear fa

19、ilure criterion at point M is used and shown in Fig.</p><p>  It can be seen that the strength of the tangential line equals or exceeds that of a nonlinear failure criterion at the same normal stress. Thus,

20、the linear failure criterion represented by the tangential line will give an upper bound on the actual load for the material, whose failure is governed by a nonlinear failure criterion.In fact, many researchers~Lymser 19

21、70; Sloan 1989; Sloan andKleeman 1995; Yu et al. 1998; Kim et al. 1999, 2002! Have adopted this approach in their limit analyses.</p><p>  Upper Bound Solutions with a Nonlinear Failure Criterion</p>

22、<p>  In an upper bound limit analysis, solutions depend on the choices of kinematically admissible velocity ?elds. To obtain better solutions ~lower upper bounds!, work has to be done for trial kinematically admiss

23、ible velocity ?elds, as many as possible. Rotational failure mechanisms have been considered when using an upper bound approach ~Chen 1975!. In the stability analysis of a slope, comparing with different translational fa

24、ilure mechanisms,Chen ~1975! concluded that a rotational failure mechan</p><p>  rotational failure surface for a perfect-plastic body collapse must be a log-spiral surface ~log-spiral line for plane strain

25、problems!.Basic ideas in Chen ~1975! on the rotational log-spiral surfacesare adopted in the method of the paper.</p><p>  Conclusions</p><p>  An improved method using a ‘‘generalized tangentia

26、l’’ technique approximating a nonlinear failure criterion is developed based on the upper bound theorem of plasticity and is used to analyze the stability of slopes in this paper. For a slope as shown in Fig. without sur

27、charge, the values of the stability factor calculated using the proposed upper bound method are almost equal to those obtained by Zhang and Chen~1987!For a translational failure mechanism of the vertical cut slope iden

28、tical solu</p><p><b>  附錄二 中文文獻</b></p><p>  邊坡穩(wěn)定性非線性破壞的判定標(biāo)準(zhǔn)</p><p><b>  介紹:</b></p><p>  邊坡穩(wěn)定對于土質(zhì)工程來說是一個非常重要的問題。許多研究人員試圖開發(fā)并且詳盡闡述邊坡穩(wěn)定評估的方法。對于所提

29、出的方法概括起來可分為四個類別:</p><p><b>  1 傳統(tǒng)切片方法</b></p><p><b>  2 特征線方法</b></p><p>  3 上部和下部固定途徑的限制分析方法。</p><p>  在他們之中,切片方法幾乎控制了土壤和巖石邊坡的穩(wěn)定土質(zhì)技術(shù)的行業(yè)。因為傳統(tǒng)的切

30、片方法比較簡單且貼近現(xiàn)實。通過眾多的實踐證明并被廣泛采用。直到現(xiàn)在,這個判定標(biāo)準(zhǔn)仍然被大家普遍采用于對穩(wěn)定問題的極限分析。原因是線形MC判定標(biāo)準(zhǔn)可以被表示為一個圓。將穩(wěn)定性這個問題表達成一個線形函數(shù)在二維空間的平面變形問題,更加形象的解決非線形穩(wěn)定問題。</p><p>  然而,在1983年,實驗證明有關(guān)于非線形穩(wěn)定性的問題本質(zhì);Agaretal.1985年;Stantarelli 1987年。當(dāng)應(yīng)用一個最高界

31、面時要估計在非線形故障判定標(biāo)準(zhǔn)的承受能力或穩(wěn)定性時,許多研究員遇到了同一個問題;如何計算外力完成的工作率和消能率速度的斷性。解決的這問題適當(dāng)?shù)姆椒?,可以分為兩個類型。</p><p>  1 使用一個變化微積分技術(shù)。Baker和Frydman-1983!申請了變化微積分技術(shù)與非劈裂小條的承受能力的治理的等式基于傾斜的頂面水平面的立足處。張和陳與1987!轉(zhuǎn)換了復(fù)雜微分方程,使用變化微積分技術(shù)反縣一個初值問題和提出

32、一個有效的數(shù)字做法,叫一個相反方法,解決的一個平面變形穩(wěn)定問題使用一般非線形問題的判定標(biāo)準(zhǔn)。他們給了數(shù)字剛性 的結(jié)果一簡單在沒有額外費的finite同源傾斜。</p><p>  2 使用一個“tangen-tial”技術(shù)。Drescher和Christopoulos.Colins等與1988提出更加簡單的供選擇的“正切”技術(shù)評估剛性系數(shù)。</p><p><b>  “廣義正切

33、”技術(shù)</b></p><p>  從先行失敗表面計算的極限負載,總是包圍實際非線性失敗表面,講師在實際極限負載的最高界面價值-Chen 1975年! 這歸結(jié)于事實包圍實際非線性鼓掌判定標(biāo)準(zhǔn)的一條正切線在點M在圖1使用并且顯示。能看到正切線的力量總和和超出非線性故障判定標(biāo)準(zhǔn)在同一個正應(yīng)力。實際上,許多研究員Lymser 1970年;Sloan 1989年;Sloan和Lleeman 1995年;Yu等

34、1998年;金等1999年2002年!也采取了在他們的極限分析的這種方法。</p><p>  非線性穩(wěn)定最高界面解答</p><p>  在一個最高界面極限分析,解答取決于運動學(xué)上可接受速度范圍的選擇。獲得更好的土路基最高界面!工作必須在實驗可接受速度范圍內(nèi)完成,越多越好?;贑hen(1975)失效機理最高界面方法。在對傾斜的穩(wěn)定性分析,和不同的平移失效機理相比,陳1975.認(rèn)為一個旋

35、轉(zhuǎn)的失效機理是一個E-F降低重要高度或剛性系數(shù)的平移失效機理。在 最高界面,定理要求完善塑料身體崩潰的旋轉(zhuǎn)的失敗表面必須是平面問題的一條螺旋線,這個思想最終被相關(guān)人員認(rèn)可并采取。</p><p><b>  結(jié)論</b></p><p>  在可塑性最高界面定理和使用分析邊坡穩(wěn)定時,對于一個邊坡沒有額外費,使用提出的最高界面方法計算的剛性系數(shù)的價值與張和陳獲得的那些是

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論