版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p><b> 原文:</b></p><p> Ultrasonic distance meter</p><p> Document Type and Number:United States Patent 5442592 </p><p> Abstract:An ultrasonic distance meter c
2、ancels out the effects of temperature and humidity variations by including a measuring unit and a </p><p> reference unit. In each of the units, a repetitive series of pulses is </p><p> gener
3、ated, each having a repetition rate directly related to the </p><p> respective distance between an electroacoustic transmitter and an </p><p> electroacoustic receiver. The pulse trains are p
4、rovided to respective </p><p> counters, and the ratio of the counter outputs is utilized to determine </p><p> the distance being measured. </p><p> Publication Date:08/15/1995
5、</p><p> Primary Examiner:Lobo, Ian J. </p><p> BACKGROUND OF THE INVENTION </p><p> This invention relates to apparatus for the measurement of distance </p><p> an
6、d, more particularly, to such apparatus which transmits ultrasonic </p><p> waves between two points. </p><p> Precision machine tools must be calibrated. In the past, this has been </p>
7、<p> accomplished utilizing mechanical devices such as calipers, </p><p> micrometers, and the like. However, the use of such devices does not </p><p> readily lend itself to automatio
8、n techniques. It is known that the </p><p> distance between two points can be determined by measuring the </p><p> propagation time of a wave travelling between those two points. One </p&g
9、t;<p> such type of wave is an ultrasonic, or acoustic, wave. When an </p><p> ultrasonic wave travels between two points, the distance between the </p><p> two points can be measured
10、by multiplying the transit time of the wave </p><p> by the wave velocity in the medium separating the two points. It is </p><p> therefore an object of the present invention to provide appara
11、tus </p><p> utilizing ultrasonic waves to accurately measure the distance between </p><p> two points. </p><p> When the medium between the two points whose spacing is being mea
12、sured </p><p> is air, the sound velocity is dependent upon the temperature and </p><p> humidity of the air. It is therefore a further object of the,present </p><p> invention t
13、o provide apparatus of the type described which is </p><p> independent of temperature and humidity variations. </p><p> SUMMARY OF THE INVENTION </p><p> The foregoing and addit
14、ional objects are attained in accordance with </p><p> the principles of this invention by providing distance measuring </p><p> apparatus which includes a reference unit and a measuring unit.
15、 The </p><p> reference and measuring units are the same and each includes an </p><p> electroacoustic transmitter and an electroacoustic receiver. The </p><p> spacing between t
16、he transmitter and the receiver of the reference unit </p><p> is a fixed reference distance, whereas the spacing between the </p><p> transmitter and receiver of the measuring unit is the dis
17、tance to be </p><p> measured. In each of the units, the transmitter and receiver are </p><p> coupled by a feedback loop which causes the transmitter to generate an </p><p> aco
18、ustic pulse which is received by the receiver and converted into an </p><p> electrical pulse which is then fed back to the transmitter, so that a </p><p> repetitive series of pulses results.
19、 The repetition rate of the pulses </p><p> is inversely related to the distance between the transmitter and the </p><p> receiver. In each of the units, the pulses are provided to a counter.
20、</p><p> Since the reference distance is known, the ratio of the counter outputs </p><p> is utilized to determine the desired distance to be measured. Since </p><p> both counts
21、 are identically influenced by temperature and humidity </p><p> variations, by taking the ratio of the counts, the resultant </p><p> measurement becomes insensitive to such variations. </
22、p><p> BRIEF DESCRIPTION OF THE DRAWINGS </p><p> The foregoing will be more readily apparent upon reading the following </p><p> description in conjunction with the drawing in whic
23、h the single FIGURE </p><p> schematically depicts apparatus constructed in accordance with the </p><p> principles of this invention. </p><p> DETAILED DESCRIPTION </p>&
24、lt;p> Referring now to the drawing, there is shown a measuring unit 10 and a </p><p> reference unit 12, both coupled to a utilization means 14. The </p><p> measuring unit 10 includes an
25、electroacoustic transmitter 16 and an </p><p> electroacoustic receiver 18. The transmitter 16 includes piezoelectric </p><p> material 20 sandwiched between a pair of electrodes 22 and 24. &l
26、t;/p><p> Likewise, the receiver 18 includes piezoelectric material 26 sandwiched </p><p> between a pair of electrodes 28 and 30. As is known, by applying an </p><p> electric fiel
27、d across the electrodes 22 and 24, stress is induced in </p><p> the piezoelectric material 20. If the field varies, such as by the </p><p> application of an electrical pulse, an acoustic wav
28、e 32 is generated. </p><p> As is further known, when an acoustic wave impinges upon the receiver </p><p> 18, this induces stress in the piezoelectric material 26 which causes </p><
29、;p> an electrical signal to be generated across the electrodes 28 and 30. </p><p> Although piezoelectric transducers have been illustrated, other </p><p> electroacoustic devices may be u
30、tilized, such as, for example, </p><p> electrostatic, electret or electromagnetic types. </p><p> As shown, the electrodes 28 and 30 of the receiver 18 are coupled to </p><p> t
31、he input of an amplifier 34, whose output is coupled to the input of a </p><p> detector 36. The detector 36 is arranged to provide a signal to the </p><p> pulse former 38 when the output fro
32、m the amplifier 34 exceeds a </p><p> predetermined level. The pulse former 38 then generates a trigger pulse </p><p> which is provided to the pulse generator 40. In order to enhance the <
33、/p><p> sensitivity of the system, the transducers 16 and 18 are resonantly </p><p> excited. There is accordingly provided a continuous wave oscillator 42 </p><p> which provides a
34、 continuous oscillating signal at a fixed frequency, </p><p> preferably the resonant frequency of the transducers 16 and 18. This </p><p> oscillating signal is provided to the modulator 44.
35、To effectively </p><p> excite the transmitter 16, it is preferable to provide several cycles </p><p> of the resonant frequency signal, rather than a single pulse or single </p><p&
36、gt; cycle. Accordingly, the pulse generator 40 is arranged, in response to </p><p> the application thereto of a trigger pulse, to provide a control pulse </p><p> to the modulator 44 having
37、a time duration equal the time duration of a </p><p> predetermined number of cycles of the oscillating signal from the </p><p> oscillator 42. This control pulse causes the modulator 44 to pa
38、ss a </p><p> "burst" of cycles to excite the transmitter 16. </p><p> When electric power is applied to the described circuitry, there is </p><p> sufficient noise at
39、the input to the amplifier 34 that its output </p><p> triggers the pulse generator 40 to cause a burst of oscillating cycles </p><p> to be provided across the electrodes 22 and 24 of the tra
40、nsmitter 16. </p><p> The transmitter 16 accordingly generates an acoustic wave 32 which </p><p> impinges upon the receiver 18. The receiver 18 then generates an </p><p> electr
41、ical pulse which is applied to the input of the amplifier 34, </p><p> which again causes triggering of the pulse generator 40. This cycle </p><p> repeats itself so that a repetitive series o
42、f trigger pulses results at </p><p> the output of the pulse former 38. This pulse train is applied to the </p><p> counter 46, as well as to the pulse generator 40. </p><p> The
43、 transmitter 16 and the receiver 18 are spaced apart by the distance </p><p> "D" which it is desired to measure. The propagation time "t" for an </p><p> acoustic wave 32
44、travelling between the transmitter 16 and the receiver </p><p> 18 is given by: t=D/V s </p><p> where V s is the velocity of sound in the air between the transmitter </p><p> 16
45、 and the receiver 18. The counter 46 measures the repetition rate of </p><p> the trigger pulses, which is equal to 1/t. Therefore, the repetition </p><p> rate is equal to V s /D. The velocit
46、y of sound in air is a function of </p><p> the temperature and humidity of the air, as follows: ##EQU1## where T </p><p> is the temperature, p is the partial pressure of the water vapor, H i
47、s </p><p> the barometric pressure, Γ w and Γ a are the ratio of constant </p><p> pressure specific heat to constant volume specific heat for water vapor </p><p> and dry air, r
48、espectively. Thus, although the repetition rate of the </p><p> trigger pulses is measured very accurately by the counter 46, the sound </p><p> velocity is influenced by temperature and humid
49、ity so that the measured </p><p> distance D cannot be determined accurately. </p><p> In accordance with the principles of this invention, a reference unit </p><p> 12 is provid
50、ed. The reference unit 12 is of the same construction as </p><p> the measuring unit 10 and therefore includes an electroacoustic </p><p> transmitter 50 which includes piezoelectric material
51、52 sandwiched </p><p> between a pair of electrodes 54 and 56, and an electroacoustic receiver </p><p> 58 which includes piezoelectric material 60 sandwiched between a pair </p><p&
52、gt; of electrodes 62 and 64. Again, transducers other than the </p><p> piezoelectric type can be utilized. The transmitter 50 and the receiver </p><p> 58 are spaced apart a known and fixed
53、reference distance "D R ". The </p><p> electrodes 62 and 64 are coupled to the input of the amplifier 66, </p><p> whose output is coupled to the input of the detector 68. The outpu
54、t of </p><p> the detector 68 is coupled to the pulse former 70 which generates </p><p> trigger pulses. The trigger pulses are applied to the pulse generator </p><p> 72 which c
55、ontrols the modulator 74 to pass bursts from the continuous </p><p> wave oscillator 76 to the transmitter 50. The trigger pulses from the </p><p> pulse former 70 are also applied to the coun
56、ter 78. </p><p> Preferably, all of the transducers 16, 18, 50 and 58 have the same </p><p> resonant frequency. Therefore, the oscillators 42 and 76 both operate </p><p> at tha
57、t frequency and the pulse generators 40 and 72 provide equal </p><p> width output pulses. </p><p> In usage, the measuring unit 10 and the reference unit 12 are in close </p><p>
58、 proximity so that the sound velocity in both of the units is the same. </p><p> Although the repetition rates of the pulses in the measuring unit 10 </p><p> and the reference unit 12 are ea
59、ch temperature and humidity dependent, </p><p> it can be shown that the distance D to be measured is related to the </p><p> reference distance D R as follows: i D=D R (1/t R )/(1/t) </p&g
60、t;<p> where t R is the propagation time over the distance D R in the </p><p> reference unit 12. This relationship is independent of both temperature </p><p> and humidity. </p>
61、<p> Thus, the outputs of the counters 46 and 78 are provided as inputs to </p><p> the microprocessor 90 in the utilization means 14. The microprocessor </p><p> 90 is appropriately p
62、rogrammed to provide an output which is </p><p> proportional to the ratio of the outputs of the counters 46 and 78, </p><p> which in turn are proportional to the repetition rates of the <
63、/p><p> respective trigger pulse trains of the measuring unit 10 and the </p><p> reference unit 12. As described, this ratio is independent of </p><p> temperature and humidity and
64、, since the reference distance D R is </p><p> known, provides an accurate representation of the distance D. The </p><p> utilization means 14 further includes a display 92 which is coupled to
65、 </p><p> and controlled by the microprocessor 90 so that an operator can readily </p><p> determine the distance D. </p><p> Experiments have shown that when the distance betwee
66、n the transmitting </p><p> and receiving transducers is too small, reflections of the acoustic </p><p> wave at the transducer surfaces has a not insignificant effect which </p><p&
67、gt; degrades the measurement accuracy. Accordingly, it is preferred that </p><p> each transducer pair be separated by at least a certain minimum </p><p> distance, preferably about four inch
68、es.</p><p><b> 譯文:</b></p><p><b> 超聲波測(cè)距儀</b></p><p> 文件類(lèi)型和數(shù)目:美國(guó)專(zhuān)利5442592 </p><p> 摘要:提出了一種超聲波測(cè)距儀來(lái)抵消溫度和濕度的變化,包括測(cè)量單元和參考</p><p>
69、標(biāo)準(zhǔn)。在每一個(gè)單位,重復(fù)的產(chǎn)生一系列脈沖,每一個(gè)重復(fù)直接關(guān)系到發(fā)射機(jī)和</p><p> 接收機(jī)之間的距離。脈沖串提供給各自的計(jì)數(shù)器,然后利用計(jì)數(shù)器所測(cè)得的數(shù)據(jù)</p><p><b> 進(jìn)行距離的測(cè)量。</b></p><p> 出版日期: 1995年8月15日 </p><p> 主審查員:羅保.伊恩j. &
70、lt;/p><p><b> 一、背景發(fā)明 </b></p><p> 本發(fā)明涉及到儀器的測(cè)量距離,更特別是,這種儀器傳送超聲波于兩點(diǎn)之間。精密機(jī)器必須校準(zhǔn)。在過(guò)去,這已經(jīng)可以利用卡鉗,微米等工具來(lái)校準(zhǔn)機(jī)械設(shè)備。不過(guò),使用這種工具并不容易實(shí)現(xiàn)自動(dòng)化。據(jù)了解,該兩點(diǎn)之間距離可以通過(guò)測(cè)量波在兩點(diǎn)之間傳播時(shí)間來(lái)確定。這樣一個(gè)類(lèi)型的波可以是一種超聲波,或聲,或波。當(dāng)超聲波傳播
71、與兩點(diǎn)之間時(shí),兩個(gè)點(diǎn)之間的距離可以通過(guò)由超聲波波速乘以他的傳播時(shí)間,在合適的分離的兩點(diǎn)。因此,這是一個(gè)發(fā)明提供儀器利用超聲波準(zhǔn)確測(cè)量?jī)牲c(diǎn)之間距離的方法。 </p><p> 當(dāng)中等兩個(gè)點(diǎn)之間的介質(zhì)是空氣,聲速是取決于溫度和空氣相對(duì)濕度。因此,這</p><p> 個(gè)發(fā)明的進(jìn)一步目標(biāo)是,目前的發(fā)明提供儀器的方法如同所描述的一樣是獨(dú)立于溫度和濕度的變化的。</p><p
72、><b> 二、綜述發(fā)明 </b></p><p> 前述的和額外的目標(biāo)已經(jīng)實(shí)現(xiàn)了根據(jù)這些原則的這項(xiàng)發(fā)明提供距離測(cè)量?jī)x器,其中包括一個(gè)參考的單元和測(cè)量單元。參考和測(cè)量單元是相同的,每個(gè)單元都包括一個(gè)電聲波的發(fā)射機(jī)和接收機(jī)。參考單元的發(fā)射器和接收器之間的間隔是一個(gè)固定的參考距離,然而測(cè)量單元的發(fā)射器和接收器之間的距離才是我們所要測(cè)量的部分。在每一個(gè)單元中,發(fā)射機(jī)和接收機(jī)都連接了一個(gè)反
73、饋環(huán)路,以使發(fā)射機(jī)產(chǎn)生由接收器接收的聲波生脈沖,然后由接收器轉(zhuǎn)換成一個(gè)電脈沖反饋到發(fā)射機(jī),使產(chǎn)生一系列重復(fù)脈沖的結(jié)果。脈沖重復(fù)率是成反比關(guān)系發(fā)射器和接收器之間的距離。在每一個(gè)單元,脈沖被用來(lái)提供給一個(gè)計(jì)數(shù)器。由于參考的距離是已經(jīng)知道了的,所以計(jì)數(shù)器所輸出的數(shù)據(jù)被用來(lái)確定所期望測(cè)得的距離。由于溫度和適度的變化,這兩方面都會(huì)造成相同的影響,利用計(jì)數(shù)器所提供的數(shù)據(jù),這樣的測(cè)量對(duì)于溫度和濕度引起的變化一樣是沒(méi)有辦法避免的。</p>
74、<p><b> 三、簡(jiǎn)要說(shuō)明圖紙 </b></p><p> 通過(guò)讀接下來(lái)的說(shuō)明前面的敘述將變得更加明顯,這個(gè)關(guān)于電路原理圖的描述在</p><p> 于這項(xiàng)發(fā)明相關(guān)規(guī)律保持了相當(dāng)?shù)囊恢滦浴?lt;/p><p><b> 四、詳細(xì)說(shuō)明 </b></p><p> 根據(jù)現(xiàn)在的繪圖,
75、有結(jié)果表明,測(cè)量單位和10參考單位12,都聯(lián)結(jié)起來(lái)組成可以利用的單元14 。測(cè)量單位包括10包括了一個(gè)電信號(hào)發(fā)射機(jī)16和一個(gè)電信號(hào)接收機(jī)18 。發(fā)射器16包括了夾著一對(duì)電極22河24的壓電材料20。同樣,接收機(jī)18,包括了夾著一對(duì)電極28河30的壓電材料26。眾所周知,通過(guò)利用電極22和24之間產(chǎn)生的電場(chǎng),壓電材料20將產(chǎn)生壓力。如果該電場(chǎng)產(chǎn)生變化,例如通過(guò)一個(gè)電脈沖,就會(huì)產(chǎn)生一個(gè)聲波32。因此,進(jìn)一步得知,當(dāng)聲波影響到接收器18的時(shí)候
76、,這時(shí)會(huì)引起接收器上的壓電材料26產(chǎn)生機(jī)械變形,同時(shí)產(chǎn)生一個(gè)電信號(hào)通過(guò)28和30這一對(duì)電極。雖然已經(jīng)對(duì)壓電傳感器作了說(shuō)明,但是其他電聲裝置也可利用,例如,靜電,駐極體或電磁類(lèi)型。 </p><p> 如表所示,接收器的電極28和30將于放大器34的輸入端相連接,同時(shí),放大器的輸出端于探測(cè)器36相連接。脈沖發(fā)生器38然后產(chǎn)生一個(gè)觸發(fā)脈沖,這是提供給脈沖發(fā)生器40.在為了提供靈敏度該系統(tǒng)的傳感器16和18在通常情況
77、下都是保持運(yùn)作的。根據(jù)相關(guān)的需要,本發(fā)明提供了一個(gè)連續(xù)波振蕩器42,他能持續(xù)的產(chǎn)生一個(gè)固定頻率和連續(xù)振蕩信號(hào),最好是同傳感器16和18能接受到的固定頻率一樣。這個(gè)振蕩信號(hào)被用來(lái)提供給調(diào)制器44。為了使發(fā)射機(jī)16右線的工作,最好的做法是提供幾個(gè)周期的共振頻率信號(hào),而不是一個(gè)單脈沖或單周期。因此,在這里使用了脈沖發(fā)生器40,用于回應(yīng)每一個(gè)觸發(fā)脈沖,提供一個(gè)控制脈沖給調(diào)制器44,讓他有一個(gè)與來(lái)自于振蕩器42的周期振蕩信號(hào)預(yù)定的相同時(shí)間。這樣的
78、控制脈沖能使調(diào)制器44傳送一個(gè)周期的突破口以觸發(fā)發(fā)射機(jī)16。 當(dāng)電源被用于描述的電路,有相當(dāng)大的噪音輸入到放大器34 ,以至于其輸出觸發(fā)脈沖發(fā)生器40引起了正當(dāng)周期變化,這個(gè)振蕩周期是用來(lái)提供給發(fā)射器16的電極22和24。發(fā)射器16因此產(chǎn)生聲波32并作用于接收器18,接收器18然后產(chǎn)生一個(gè)電脈沖輸入放大器34,這再次觸發(fā)脈沖發(fā)生器40。這個(gè)周期</p><p> 根據(jù)這項(xiàng)發(fā)明的基本原理,需要利用參考單元12。參
79、考單元12同參考單元10基本上是一樣的,其中,包括一電發(fā)射機(jī)50,以及在壓電材料52之間的一對(duì)電極54和56。接收器58,其中包括壓電材料60之間的一對(duì)電極62和64。再次,傳感器出了其他類(lèi)型壓電也可以被利用。發(fā)射器50和接收器58之間的距離都是已知且固定的,設(shè)為DR。電極62和64連接到放大器66的輸入端,其輸出連接到探測(cè)器68。探測(cè)器68的輸出端連接到脈沖發(fā)生器70,脈沖發(fā)生器70產(chǎn)生觸發(fā)脈沖。觸發(fā)脈沖應(yīng)用到脈沖發(fā)生器72以控制調(diào)制
80、器74通過(guò)連續(xù)振蕩器76傳送一段脈沖串傳遞至發(fā)射機(jī)50。來(lái)自于脈沖發(fā)生器70的觸發(fā)脈沖也用于計(jì)數(shù)器78。</p><p> 最好是所有的傳感器16,18,50和58具有相同的共振頻率。因此,振蕩器42和76都工作在相同的頻率上,脈沖發(fā)生器40和72產(chǎn)生相同帶寬的輸出脈波。</p><p> 按照慣例,測(cè)量單元10和參考單元12空間上很接近,使該聲速在這兩個(gè)單位上是相同的。雖然測(cè)量單元1
81、0和參考單元12的脈沖重復(fù)率各自依賴于各自的溫度和濕度,能證明的距離D來(lái)衡量??梢缘贸鰷y(cè)量單元和參考單元的聯(lián)系如下iD=DR(1/tR)/(1/t)。tR是指參考單元聲波傳播與固定空間的時(shí)間。這個(gè)關(guān)系與空氣的溫度和濕度都是無(wú)關(guān)的。因此,計(jì)數(shù)器46和78的輸出被用來(lái)提供微處理器90,作為方法14。微處理器90可通過(guò)編寫(xiě)程序來(lái)提供輸出。這個(gè)輸出與計(jì)數(shù)器46和78的輸出是成比例的,反過(guò)來(lái)也同測(cè)量單元10和參考單元12各自的觸發(fā)脈沖串成比例。如
82、所敘述的一樣,這些比例是不依賴于溫度和濕度的,因?yàn)閰⒖季嚯xDR是已知的,提供了一個(gè)準(zhǔn)確的D的參考。這個(gè)利用方法12更進(jìn)一步的包括了被微處理器控制的顯示器92,所以設(shè)備可以確定距離D。</p><p> 試驗(yàn)還表明當(dāng)發(fā)射機(jī)和接收器傳感器之間的距離太小的時(shí)候,聲波的反射在傳感器表面的效果不是很明顯,以至于極大的影響了測(cè)量的精度。根據(jù)這種情況,使傳感器分開(kāi)有一個(gè)相當(dāng)?shù)淖钚【嚯x,最合適是4英寸。</p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 外文文獻(xiàn)及翻譯--超聲波測(cè)距儀
- 超聲波測(cè)距儀外文獻(xiàn)翻譯
- 外文翻譯---超聲波測(cè)距儀
- 外文翻譯超聲波測(cè)距儀
- 超聲波測(cè)距儀外文翻譯
- 外文翻譯超聲波測(cè)距儀
- 超聲波測(cè)距儀外文資料翻譯
- 外文資料翻譯---超聲波測(cè)距儀
- 超聲波測(cè)距儀
- 超聲波測(cè)距儀系統(tǒng)設(shè)計(jì)外文翻譯
- 超聲波測(cè)距儀設(shè)計(jì)
- 超聲波測(cè)距儀的設(shè)計(jì)【文獻(xiàn)綜述】
- 超聲波測(cè)距儀開(kāi)題報(bào)告
- 超聲波測(cè)距儀開(kāi)題報(bào)告
- 超聲波測(cè)距儀畢業(yè)設(shè)計(jì)
- 畢業(yè)論文---超聲波測(cè)距儀
- 超聲波測(cè)距儀的研制.pdf
- 超聲波測(cè)距儀設(shè)計(jì)開(kāi)題報(bào)告
- 畢業(yè)論文_超聲波測(cè)距儀
- 超聲波測(cè)距儀畢業(yè)論文
評(píng)論
0/150
提交評(píng)論