塑料注塑模具并行設(shè)計外文翻譯@中英文翻譯@外文文獻翻譯_第1頁
已閱讀1頁,還剩20頁未讀 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p>  塑料注塑模具并行設(shè)計</p><p>  Assist.Prof.Dr. A. YAYLA /Prof.Dr. Pa? a YAYLA</p><p><b>  摘要</b></p><p>  塑料制品制造業(yè)近年迅速成長。其中最受歡迎的制作過程是注塑塑料零件。注塑模具的設(shè)計對產(chǎn)品質(zhì)量和效率的產(chǎn)品加工非常重要。模具公司想

2、保持競爭優(yōu)勢,就必須縮短模具設(shè)計和制造的周期。</p><p>  模具是工業(yè)的一個重要支持行業(yè),在產(chǎn)品開發(fā)過程中作為一個重要產(chǎn)品設(shè)計師和制造商之間的聯(lián)系。產(chǎn)品開發(fā)經(jīng)歷了從傳統(tǒng)的串行開發(fā)設(shè)計制造到有組織的并行設(shè)計和制造過程中,被認為是在非常早期的階段的設(shè)計。并行工程的概念(CE)不再是新的,但它仍然是適用于當(dāng)今的相關(guān)環(huán)境。團隊合作精神、管理參與、總體設(shè)計過程和整合IT工具仍然是并行工程的本質(zhì)。CE過程的應(yīng)用設(shè)計的

3、注射過程包括同時考慮塑件設(shè)計、模具設(shè)計和注塑成型機的選擇、生產(chǎn)調(diào)度和成本中盡快設(shè)計階段。</p><p>  介紹了注射模具的基本結(jié)構(gòu)設(shè)計。在該系統(tǒng)的基礎(chǔ)上,模具設(shè)計公司分析注塑模具設(shè)計過程。該注射模設(shè)計系統(tǒng)包括模具設(shè)計過程及模具知識管理。最后的原則概述了塑料注射模并行工程過程并對其原理應(yīng)用到設(shè)計。</p><p>  關(guān)鍵詞:塑料注射模設(shè)計、并行工程、計算機輔助工程、成型條件、塑料注塑、

4、流動模擬</p><p><b>  1、簡介</b></p><p>  注塑模具總是昂貴的,不幸的是沒有模具就不可能生產(chǎn)模具制品。每一個模具制造商都有他/她自己的方法來設(shè)計模具,有許多不同的設(shè)計與建造模具。當(dāng)然最關(guān)鍵的參數(shù)之一,要考慮到模具設(shè)計階段是大量的計算、注射的方法,澆注的的方法、研究注射成型機容量和特點。模具的成本、模具的質(zhì)量和制件質(zhì)量是分不開的</

5、p><p>  在針對今天的計算機輔助充型模擬軟件包能準確地預(yù)測任何部分充填模式環(huán)境中。這允許快速模擬實習(xí),幫助找到模具的最佳位置。工程師可以在電腦上執(zhí)行成型試驗前完成零件設(shè)計。工程師可以預(yù)測過程系統(tǒng)設(shè)計和加工窗口,并能獲得信息累積所帶來的影響,如部分過程變量影響性能、成本、外觀等。</p><p><b>  2、注射成型法</b></p><p&g

6、t;  注塑成型是最有效的方法之一,將塑料最好的一面呈現(xiàn)。這是普遍用于制造復(fù)雜的制件,優(yōu)點是簡單、經(jīng)濟、準確與少浪費。塑料零件的批量生產(chǎn)主要采用模具。產(chǎn)品設(shè)計制造過程包括模具的結(jié)構(gòu)必須經(jīng)過外觀評價和結(jié)構(gòu)優(yōu)化。當(dāng)設(shè)計師創(chuàng)造注射模具組件時,他們面臨一個巨大的多種選擇,并行工程需要一個工程師考慮制產(chǎn)品在發(fā)展階段時的過程設(shè)計。一個好的產(chǎn)品設(shè)計為了滿足市場其制造過程是不可能太貴的。CAD/CAM整合了過程仿真、快速成形制造能減少風(fēng)險,進一步提高產(chǎn)

7、品開發(fā)的有效性。</p><p>  3、注塑模具設(shè)計重要的計算機輔助</p><p>  注射模具設(shè)計任務(wù)是相當(dāng)復(fù)雜的。計算機輔助工程(CAE)分析工具提供了巨大的優(yōu)勢讓設(shè)計工程師考慮幾乎所有模具、注塑參數(shù)沒有真正利用的地方。在可能性的設(shè)計、理念設(shè)計師,給工程師們機會去消除潛在的問題,開始真正的生產(chǎn)。此外,在虛擬環(huán)境中,設(shè)計師可以快速而方便地評估特定的成型參數(shù)敏感性的質(zhì)量和生產(chǎn)最終產(chǎn)品。

8、所有這些分析工具使所有模具設(shè)計將在一天甚至數(shù)小時完成,而不需要幾周或幾個月來做真正的實驗反復(fù)試驗。CAE用于早期設(shè)計的部分,模具和注塑模具參數(shù)、節(jié)約成本是實質(zhì)功能不僅是最好的部分,而且還能節(jié)省和縮短開發(fā)產(chǎn)品推向市場的時間。</p><p>  在所有方面的成型過程中需要滿足塑料部分設(shè)置的公差,包括零件的尺寸和形狀,樹脂的化學(xué)結(jié)構(gòu)、填料使用,模具型腔布置、澆注、模具冷卻并釋放機制使用。面對這復(fù)雜性,設(shè)計師經(jīng)常使用電

9、腦設(shè)計工具,如有限元分析(FEA)和充型分析(MFA),減少開發(fā)時間和成本。有限元分析確定部分結(jié)構(gòu)的應(yīng)變、應(yīng)力和撓度,在那里這些參數(shù)可以很好地被定義。沖型分析位置和大小進行優(yōu)化樹脂流動。它還定義了焊縫的位置、面積過大的壓力,以及如何影響墻壁和肋厚度流動。其它有限元分析設(shè)計工具包括模具冷卻溫度分布,分析周期時間和收縮為空間控制和預(yù)測凍結(jié)應(yīng)力、翹曲變形等情況。</p><p>  采用CAE分析部分壓縮模如圖1所示。

10、分析周期始于創(chuàng)造一個CAD模型和有限元網(wǎng)格的模具腔。在注入條件規(guī)定,充型、纖維取向、固化和熱歷史、收縮和翹曲變形等情況進行仿真。該材料的性能計算模型模擬可用于結(jié)構(gòu)的行為的一部分。如果需要部分設(shè)計澆口位置及加工條件可以在電腦上修改,直到一個可接受的零件的表達式。摘要分析了一個優(yōu)化完成部分可采用降低weldline(亦即也knitline),優(yōu)化力量、控制溫度和固化、最小收縮和翹曲變形等情況。</p><p>  模

11、具加工的前身是手工制作,如檢查每一剪機床維修工。自動化的增長和普遍使用的電腦數(shù)值控制或CNC加工中心使這過程變得更加簡便。設(shè)計的時間也被大大降低通過使用特殊的軟件能夠產(chǎn)生刀具路徑直接從CAD數(shù)據(jù)文件提取。主軸速度高達100000每分鐘轉(zhuǎn)速提一步提出了高速加工。切削材料已經(jīng)證明了驚人的表現(xiàn)而不使用任何的剪切/冷卻液,什么都沒有。作為一個結(jié)果,加工過程復(fù)雜的型心和型腔已經(jīng)加快了。</p><p>  這是一個好消息,

12、產(chǎn)生一個模具所花費的時間不斷的被減少。壞消息是,另一方面,甚至所有這些進步、設(shè)計和制造的模具仍然要花很長時間,是非常昂貴的。</p><p>  圖1的注射模CAE分析部分</p><p>  許多公司的經(jīng)理人現(xiàn)在體會部署新產(chǎn)品推向市場迅速發(fā)展是多么的重要。企業(yè)的繁榮關(guān)鍵在于新產(chǎn)品。他們推動企業(yè)的收入、市場份額、底線和股票價格。一個公司能夠發(fā)明優(yōu)質(zhì)的產(chǎn)品和合理的價格領(lǐng)先其競爭不僅實現(xiàn)了10

13、0%的打敗市場競爭對手的產(chǎn)品,但之前到達也傾向于保持主導(dǎo)地位甚至幾年之后終于宣布競爭產(chǎn)品(史密斯,1991)。對大多數(shù)產(chǎn)品來說,這兩個優(yōu)勢是戲劇性的?,F(xiàn)在產(chǎn)品快速發(fā)展的一個關(guān)鍵方面的競爭成功。圖2顯示,只有3 - 7%的產(chǎn)品結(jié)構(gòu)與一般的工業(yè)或電子公司是小于5歲。公司在第一四分位,這個數(shù)字增加到15 - 25%。一流的公司,它是60 - 80%(湯普森,1996)。最好的公司在不斷開發(fā)新產(chǎn)品。在惠普,超過80%的利潤結(jié)果從產(chǎn)品小于2歲!(

14、Neel,1997)</p><p>  圖2重要的新產(chǎn)品(雅克布,2000)</p><p>  以先進的計算機技術(shù)和人工智能,努力已經(jīng)被指向降低成本和交貨時間在設(shè)計和制造注塑模具。注塑模具設(shè)計主要感興趣的地區(qū),因為它是一個復(fù)雜的過程涉及到很多表面設(shè)計等各零件的模具,每個都需要專家的知識和經(jīng)驗。李et.艾爾。(1997)提出了一種系統(tǒng)的方法關(guān)于注塑模具設(shè)計的知識庫和并行工程環(huán)境。<

15、/p><p>  4并行工程在模具設(shè)計中</p><p>  并行工程(CE)是一個系統(tǒng)性的方法來集成產(chǎn)品開發(fā)過程。它代表了團隊合作的價值觀、信任和分享,以這樣的方式,決策是通過協(xié)商一致,包括視角并聯(lián),從一開始就產(chǎn)品的整個生命周期(埃文斯,1998)。從本質(zhì)上講,CE提供合作、合作、集體和同步工程的工作環(huán)境。一個并行工程的方法是基于五個關(guān)鍵要素:</p><p><

16、;b>  1、過程</b></p><p><b>  2、多學(xué)科小組</b></p><p><b>  3、綜合設(shè)計模型</b></p><p><b>  4、設(shè)施</b></p><p><b>  5、軟件基礎(chǔ)設(shè)施</b><

17、;/p><p>  圖3的方法對塑料注射模設(shè)計,工程b)串并行工程</p><p>  在塑料模具制造業(yè)、CE是很重要的,由于高成本加工和長交貨期。通常,CE利用制造原型模具在設(shè)計之初相位分析和調(diào)整設(shè)計。生產(chǎn)制造模具是作為最后一步。制造過程,包括模具的結(jié)構(gòu)必須經(jīng)過外觀評價和結(jié)構(gòu)優(yōu)化的產(chǎn)品設(shè)計。CE要求工程師考慮生產(chǎn)過程中產(chǎn)品設(shè)計的發(fā)展階段。一個好的設(shè)計產(chǎn)品是滿足市場如果其制造過程是不可能的。C

18、AD/CAM整合過程模擬、快速成形制造能減少風(fēng)險,從效率和進一步提高產(chǎn)品開發(fā)的有效性。</p><p>  多年來,設(shè)計師已經(jīng)被限制在他們可以產(chǎn)出通常必須設(shè)計制造(DFM)——那就是,調(diào)整他們的設(shè)計意圖,使元件(或總成)生產(chǎn)使用一個特定的進程或程序。此外,如果一個模具用于產(chǎn)生一個項目,而因此自動設(shè)計對固有限制在一開始就相處得很好。以注塑為例,以處理一個組件成功,即使在最小程度上,下面的設(shè)計元素需要考慮的內(nèi)容:&l

19、t;/p><p><b>  1、.幾何</b></p><p><b>  .拔模斜度</b></p><p><b>  .非內(nèi)角形狀</b></p><p><b>  .近恒壁厚</b></p><p><b>  .

20、復(fù)雜性</b></p><p><b>  .分裂線位置</b></p><p><b>  .表面拋光</b></p><p><b>  材料選擇</b></p><p>  元件的合理化(減少組件)</p><p><b> 

21、 成本 </b></p><p>  在注塑、生產(chǎn)的模具生產(chǎn)注射模具元件通常是最長的部分產(chǎn)品開發(fā)過程。當(dāng)利用快速造型、CAD需要長時間,因此成為瓶頸。</p><p>  廢水處理工程的工藝設(shè)計和注塑塑料涉及相當(dāng)復(fù)雜且耗時的活動,包括零件設(shè)計、模具設(shè)計、注塑成型機的選擇、生產(chǎn)排程、工裝和成本估算。所有這些活動是傳統(tǒng)上由部分設(shè)計和模具制作人員按注射模順序的方式完成后塑料部件的設(shè)

22、計。很明顯的,這些序列階段可能會導(dǎo)致長的產(chǎn)品開發(fā)時間。但隨著社會的過程中實施并行工程所有參數(shù)影響產(chǎn)品設(shè)計、模具設(shè)計、機械的選擇、生產(chǎn)排程、模具和加工成本被認為是盡早塑料部件的設(shè)計。</p><p>  使用時有效,CAE方法節(jié)省了部分設(shè)計及制造巨大的成本和時間。這些工具幾乎讓工程師測試部分處理它在其正常使用壽命表現(xiàn)怎樣。材料供應(yīng)商,設(shè)計師和制造商應(yīng)該運用這些工具同時在設(shè)計之初階段利用CAE增加塑料成本效益。CAE

23、技術(shù)使人們有可能取代傳統(tǒng),順序決策程序和并行設(shè)計過程,其中各方之間是如何產(chǎn)生互動和分享信息,圖3塑料注塑、CAE及相關(guān)設(shè)計數(shù)據(jù)提供一個綜合的環(huán)境,為便于并行工程的設(shè)計、制造和模具部分,以及材料的選擇和模擬優(yōu)化工藝控制參數(shù)。</p><p>  定性費用有關(guān)的部分比較設(shè)計上的變化被顯示在圖4,顯示出一個事實,那就是當(dāng)設(shè)計已經(jīng)改好了在早期階段在計算機屏幕上時,與成本有關(guān)的順序的10.000倍,如果低于部分生產(chǎn)。這些改

24、變可能發(fā)生在塑料部件模具的改變,如澆口位置、厚度變化、生產(chǎn)延遲,質(zhì)量成本、機械安裝時間,或是設(shè)計變更在塑料部件。</p><p>  圖4的成本在部分改變設(shè)計產(chǎn)品開發(fā)周期(張志剛,2001年版)</p><p>  在早期設(shè)計階段,設(shè)計師設(shè)計模具部分必須完成零件設(shè)計基于各自的經(jīng)驗相似的部分。但是隨著部分變得更為復(fù)雜,它變得相當(dāng)困難的加工性能預(yù)測及部分不使用計算機輔助工具。因此,即使是相對復(fù)

25、雜的部分,使用計算機輔助工具,防止變化和昂貴的設(shè)計過程中出現(xiàn)的問題,可以注射后。為成功實施并行工程,必須有歸屬感從人人參與。</p><p><b>  5個案研究</b></p><p>  圖5顯示初始CAD(計算機輔助設(shè)計)塑料部分用于噴灌消防栓的腿。一個基本特征,部分的部分保持平注射后,在注射操作原因變形問題。</p><p>  另一

26、個重要特點的塑料部件必須是一種高效的抗彎剛度。一批料中加入了不同取向的部分如圖5 b。這些應(yīng)設(shè)計成一種方式,它有貢獻的重量最小部分的,而且是可行的。</p><p>  在模具的設(shè)計流程,分析了塑料部分進行了模具仿真分析軟件讓選拔的最佳澆口位置圖6。這個數(shù)字表明最好的點澆口位置的中間饋線的中心部分。作為失真和陶瓷注射后的部分,至關(guān)重要的是,從功能的角度,它必須被保持在最低水平,同樣也使用軟件里面分析。圖5 b顯示

27、結(jié)果暗示了事實后殘留在陶瓷注射預(yù)定義的尺寸公差。</p><p><b>  6總結(jié)</b></p><p>  在塑料注塑、CAD模型所得的塑料部分商業(yè)的3 D程序可用于部分性能和注塑工藝分析。借助于CEA技術(shù)和并行工程方法的使用,不僅注塑模具的設(shè)計和制造可以在很短的一段時間完成,而且它可能在開始時的模具設(shè)計把出現(xiàn)的所有潛在的問題從部分設(shè)計、模具設(shè)計和工藝參數(shù)消除。

28、這兩個工具幫助設(shè)計師和模具制造商生產(chǎn)良好的產(chǎn)品,更好的交付和更快的模具用較少的時間和金錢。</p><p><b>  【原文一】</b></p><p>  CONCURRENT DESIGN OF PLASTICS INJECTION MOULDS </p><p>  Assist.Prof.Dr. A. YAYLA /Prof.Dr.

29、Pa? a YAYLA</p><p>  Abstract </p><p>  The plastic product manufacturing industry has been growing rapidly in recent years. One of the most popular processes for making plastic parts is injec

30、tion moulding. The design of injection mould is critically important to product quality and efficient product processing. Mould-making companies, who wish to maintain the competitive edge, desire to shorten both desig

31、n and manufacturing leading times of the by applying a systematic mould design process. </p><p>  The mould industry is an important support industry during the product development process, serving as an imp

32、ortant link between the product designer and manufacturer. Product development has changed from the traditional serial process of design, followed by manufacture, to a more organized concurrent process where design and

33、manufacture are considered at a very early stage of design. The concept of concurrent engineering (CE) is no longer new and yet it is still applicable and relevant in tod</p><p>  This paper presents the ba

34、sic structure of an injection mould design. The basis of this system arises from an analysis of the injection mould design process for mould design companies. This injection mould design system covers both the mould des

35、ign process and mould knowledge management. Finally the principle of concurrent engineering process is outlined and then its principle is applied to the design of a plastic injection mould. </p><p>  Keywor

36、ds :Plastic injection mould design, Concurrent engineering, Computer aided engineering, Moulding conditions, Plastic injection moulding, Flow simulation </p><p>  Introduction </p><p>  Injectio

37、n moulds are always expensive to make, unfortunately without a mould it can not be possible ho have a moulded product. Every mould maker has his/her own approach to design a mould and there are many different ways of de

38、signing and building a mould. Surely one of the most critical parameters to be considered in the design stage of the mould is the number of cavities, methods of injection, types of runners, methods of gating, methods of

39、ejection, capacity and features of the injection mou</p><p>  In today’s completive environment, computer aided mould filling simulation packages can accurately predict the fill patterns of any part. This al

40、lows for quick simulations of gate placements and helps finding the optimal location. Engineers can perform moulding trials on the computer before the part design is completed. Process engineers can systematically predic

41、t a design and process window, and can obtain information about the cumulative effect of the process variables that influence part perf</p><p>  Injection Moulding </p><p>  Injection moulding i

42、s one of the most effective ways to bring out the best in plastics. It is universally used to make complex, finished parts, often in a single step, economically, precisely and with little waste. Mass production of plast

43、ic parts mostly utilizes moulds. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure optimization of the product design. Designers face a hug

44、e number of options when they create inj</p><p>  3. Importance of Computer Aided Injection Mould Design </p><p>  The injection moulding design task can be highly complex. Computer Aided Engine

45、ering (CAE) analysis tools provide enormous advantages of enabling design engineers to consider virtually and part, mould and injection parameters without the real use of any manufacturing and time. The possibility of tr

46、ying alternative designs or concepts on the computer screen gives the engineers the opportunity to eliminate potential problems before beginning the real production. Moreover, in virtual environment, d</p><p&g

47、t;  The need to meet set tolerances of plastic part ties in to all aspects of the moulding process, including part size and shape, resin chemical structure, the fillers used, mould cavity layout, gating, mould cooling an

48、d the release mechanisms used. Given this complexity, designers often use computer design tools, such as finite element analysis (FEA) and mould filling analysis (MFA), to reduce development time and cost. FEA determin

49、es strain, stress and deflection in a part by dividing the struc</p><p>  The CAE analysis of compression moulded parts is shown in Figure 1. The analysis cycle starts with the creation of a CAD model and a

50、finite element mesh of the mould cavity. After the injection conditions are specified, mould filling, fiber orientation, curing and thermal history, shrinkage and warpage can be simulated. The material properties calcul

51、ated by the simulation can be used to model the structural behaviour of the part. If required, part design, gate location and processing conditions</p><p>  Machining of the moulds was formerly done manually

52、, with a toolmaker checking each cut. This process became more automated with the growth and widespread use of computer numerically controlled or CNC machining centres. Setup time has also been significantly reduced thro

53、ugh the use of special software capable of generating cutter paths directly from a CAD data file. Spindle speeds as high as 100,000 rpm provide further advances in high speed machining. Cutting materials have demonstrat

54、ed phenome</p><p>  It is good news that the time it takes to generate a mould is constantly being reduced. The bad news, on the other hand, is that even with all these advances, designing and manufacturing

55、 of the mould can still take a long time and can be extremely expensive. </p><p>  Figure 1 CAE analysis of injection moulded parts </p><p>  Many company executives now realize how vital it

56、is to deploy new products to market rapidly. New products are the key to corporate prosperity. They drive corporate revenues, market shares, bottom lines and share prices. A company able to launch good quality products w

57、ith reasonable prices ahead of their competition not only realizes 100% of the market before rival products arrive but also tends to maintain a dominant position for a few years even after competitive products have final

58、ly been ann</p><p>  Figure 2. Importance of new product (Jacobs, 2000) </p><p>  With the advances in computer technology and artificial intelligence, efforts have been directed to reduce the

59、 cost and lead time in the design and manufacture of an injection mould. Injection mould design has been the main area of interest since it is a complex process involving several sub-designs related to various components

60、 of the mould, each requiring expert knowledge and experience. Lee et. al. (1997) proposed a systematic methodology and knowledge base for injection mould design in a c</p><p>  Concurrent Engineering in M

61、ould Design </p><p>  Concurrent Engineering (CE) is a systematic approach to integrated product development process. It represents team values of co-operation, trust and sharing in such a manner that decis

62、ion making is by consensus, involving all per spectives in parallel, from the very beginning of the product life-cycle (Evans, 1998). Essentially, CE provides a collaborative, co-operative, collective and simultaneous e

63、ngineering working environment. A concurrent engineering approach is based on five key element</p><p>  1. process </p><p>  2. multidisciplinary team </p><p>  3. integrated desi

64、gn model </p><p>  4. facility </p><p>  5. software infrastructure </p><p>  Figure 3 Methodologies in plastic injection mould design, a) Serial engineering b) Concurrent engineeri

65、ng </p><p>  In the plastics and mould industry, CE is very important due to the high cost tooling and long lead times. Typically, CE is utilized by manufacturing prototype tooling early in the design phase

66、 to analyze and adjust the design. Production tooling is manufactured as the final step. The manufacturing process and involving moulds must be designed after passing through the appearance evaluation and the structure o

67、ptimization of the product design. CE requires an engineer to consider the manufacturin</p><p>  For years, designers have been restricted in what they can produce as they generally have to design for manuf

68、acture (DFM) – that is, adjust their design intent to enable the component (or assembly) to be manufactured using a particular process or processes. In addition, if a mould is used to produce an item, there are therefor

69、e automatically inherent restrictions to the design imposed at the very beginning. Taking injection moulding as an example, in order to process a component successfully,</p><p>  1. . geometry; </p>

70、<p>  . draft angles, </p><p>  . Non re-entrants shapes, </p><p>  . near constant wall thickness, </p><p>  . complexity, </p><p>  . split line location, and &l

71、t;/p><p>  . surface finish, </p><p>  2. material choice; </p><p>  3. rationalisation of components (reducing assemblies); </p><p><b>  4. cost. </b></p&

72、gt;<p>  In injection moulding, the manufacture of the mould to produce the injection-moulded components is usually the longest part of the product development process. When utilising rapid modelling, the CAD tak

73、es the longer time and therefore becomes the bottleneck. </p><p>  The process design and injection moulding of plastics involves rather complicated and time consuming activities including part design, mould

74、 design, injection moulding machine selection, production scheduling, tooling and cost estimation. Traditionally all these activities are done by part designers and mould making personnel in a sequential manner after co

75、mpleting injection moulded plastic part design. Obviously these sequential stages could lead to long product development time. However wit</p><p>  When used effectively, CAE methods provide enormous cost

76、and time savings for the part design and manufacturing. These tools allow engineers to virtually test how the part will be processed and how it performs during its normal operating life. The material supplier, designer,

77、 moulder and manufacturer should apply these tools concurrently early in the design stage of the plastic parts in order to exploit the cost benefit of CAE. CAE makes it possible to replace traditional, sequential decisio

78、n-m</p><p>  Qualitative expense comparison associated with the part design changes is shown in Figure 4 , showing the fact that when design changes are done at an early stages on the computer screen, the co

79、st associated with is an order of 10.000 times lower than that if the part is in production. These modifications in plastic parts could arise fr om mould modifications, such as gate location, thickness changes, productio

80、n delays, quality costs, machine setup times, or design change in plastic parts. </p><p>  Figure 4 Cost of design changes during part product development cycle (Rios et.al, 2001) </p><p>  At

81、the early design stage, part designers and moulders have to finalise part design based on their experiences with similar parts. However as the parts become more complex, it gets rather difficult to predict processing and

82、 part performance without the use of CAE tools. Thus for even relatively complex parts, the use of CAE tools to prevent the late and expensive design changesand problems that can arise during and after injection. For the

83、 successful implementation of concurrent engineering, the</p><p>  Case Study </p><p>  Figure 5 shows the initial CAD design of plastics part used for the sprinkler irrigation hydrant leg. One

84、 of the essential features of the part is that the part has to remain flat after injection; any warping during the injection causes operating problems. </p><p>  Another important feature the plastic part ha

85、s to have is a high bending stiffness. A number of feeders in different orientation were added to the part as shown in Figure 5b. These feeders </p><p>  should be designed in a way that it has to contribute

86、 the weight of the part as minimum as possible. </p><p>  Before the design of the mould, the flow analysis of the plastic part was carried out with Moldflow software to enable the selection of the best gate

87、 location Figure 6a. The figure indicates that the best point for the gate location is the middle feeder at the centre of the part. As the distortion and warpage of the part after injection was vital from the function

88、ality point of view and it has to be kept at a minimum level, the same software was also utilised to yiled the warpage analysis. Fi</p><p>  6. Conclusions </p><p>  In the plastic injection mou

89、lding, the CAD model of the plastic part obtained from commercial 3D programs could be used for the part performance and injection process analyses. With the aid of CEA technology and the use of concurrent engineering me

90、thodology, not only the injection mould can be designed and manufactured in a very short of period of time with a minimised cost but also all potential problems which may arise from part design, mould design and processi

91、ng parameters could be eliminate</p><p>  References </p><p>  1. Smith P, Reinertsen D, The time-to-market race, In: Developing Products in Half the Time. New York, Van Nostrand Reinhold, pp. 3

92、–13, 1991 </p><p>  2.Thompson J, The total product development organization. Proceedings of the Second Asia–Pacific Rapid Product Development Conference, Brisbane, 1996 </p><p>  3.Neel R, Don’

93、t stop after the prototype, Seventh International Conference on Rapid Prototyping, San Francisco, 1997 </p><p>  4.Jacobs PF, “Chapter 3: Rapid Product Development” in Rapid Tooling: Technologies and Indus

94、trial Applications , Ed. Peter D. Hilton; Paul F. Jacobs, Marcel Decker, 2000 </p><p>  5.Lee R-S, Chen, Y-M, and Lee, C-Z, “Development of a concurrent mould design system: a knowledge based approach”, Comp

95、uter Integrated Manufacturing Systems, 10(4), 287-307, 1997 </p><p>  6.Evans B., “Simultaneous Engineering”, Mechanical Engineering , Vol.110, No.2, pp.38-39, 1998 </p><p>  7.Rios A, Gramann,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論