2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)

文檔簡介

1、<p><b>  英文原文</b></p><p>  Switched Reluctance Motors Drive for the</p><p>  Electrical Traction in Shearer</p><p><b>  H. Chen</b></p><p>

2、  College of Information and Electrical Engineering</p><p>  China University of Mining & Technology, Xuzhou 221008, China</p><p>  chenhaocumt@tom.com</p><p>  Abstract—The pap

3、er presented the double Switched Reluctance motors parallel drive system for the electrical traction in shearer. The system components, such as the Switched Reluctance motor, the main circuit of the power converter and t

4、he controller, were described. The control strategies of the closed-loop rotor speed control with PI algorithm and balancing the distribution of the loads with fuzzy logic algorithm were given. The tests results were als

5、o presented. It is shown that the relative d</p><p>  Keywords- switched reluctance; motor control; shearer; coal mine; electrical drive </p><p>  I. INTRODUCTION</p><p>  The under

6、ground surroundings of the coal mines are very execrable. One side, it is the moist, high dust and inflammable surroundings. On the other side, the space of roadway is limited since it is necessary to save the investment

7、 of exploiting coal mines so that it is difficult to maintain the equipments. In the modern coal mines, the automatization equipments could be used widely. The </p><p>  faults of the automatization equipmen

8、ts could affect the production and the benefit of the coal mines. The shearer is the mining equipment that coal could be cut from the coal wall. The traditional shearer was driven by the hydrostatic transmission system.

9、The fault ratio of the hydrostatic transmission system is high since the fluid in hydrostatic transmission system could be polluted easily. The faults of the hydrostatic transmission system could affect the production an

10、d the benefit of the co</p><p>  II. SYSTEM COMPONENTS</p><p>  The developed Switched Reluctance motors drive for the electrical traction in shearer is a type of the double Switched Reluctance

11、motors parallel drive system. The system is made up of two Switched Reluctance motors, a control box installed the power converter and the controller. The adopted two Switched Reluctance motors are all three-phase 12/8 s

12、tructure Switched Reluctance motor, which were shown in Figure 1. The two Switched Reluctance motors were packing by the explosion-proof enclosure, re</p><p>  Figure 1.Photograph of the two three-phase 12/8

13、 structure Switched Reluctance motor</p><p>  The power converter consists of two three-phase asymmetric bridge power converter in parallel. The IGBTs were used as the main switches. Three-phase 380V AC powe

14、r source was rectificated and supplied to the power converter. The main circuit of the power converter was shown in Figure 2</p><p>  Figure 2. Main circuit of the power converter</p><p>  . In

15、the controller, there were the rotor position detection circuit, the commutation circuit, the current and voltage protection circuit, the main switches’ gate driver circuit and the digital controller for rotor speed clos

16、ed-loop and balancing the distribution of the loads. </p><p>  III. CONTROL STRATEGY</p><p>  The two Switched Reluctance motor could all drive the shearer by the transmission outfit in the same

17、 traction guide way so that the rotor speed of the two Switched Reluctance motors could be synchronized.</p><p>  The closed-loop rotor speed control of the double Switched Reluctance motors parallel drive s

18、ystem could be implemented by PI algorithm. In the Switched Reluctance motor 1, the triggered signals of the main switches in the power converter are modulated by PWM signal, the comparison of the given rotor speed and t

19、he practical rotor speed are made and the duty ratio of PWM signal are regulated as follows, </p><p>  where, is the given rotor speed, is the practical rotor speed, is the difference of the rotor speed,

20、is the increment of the duty ratio of PWM signal of the Switched Reluctance motor 1 at k time, is the integral coefficient, is the proportion coefficient, ek is the difference of the rotor speed at k time, ek-1 is the d

21、ifference of the rotor speed at k-1 time, D1(k) is the duty ratio of PWM signal of the Switched Reluctance motor 1 at k time, and D1(k-1) is the duty ratio of PWM signal of the</p><p>  where, P2 is the outp

22、ut power of the Switched Reluctance motor drive system, Iin is the average DC supplied current of the power converter.</p><p>  In the Switched Reluctance motor 2, the triggered signals of the main switches

23、in the power converter are also modulated by PWM signal. The balancing the distribution of the loads between the two Switched Reluctance motors could be implemented by fuzzy logic algorithm. In the fuzzy logic regulator,

24、 there are two input control parameters, one is the deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors, and the other is the variation of the</p><p&g

25、t;  Figure 3. Block diagram of the double Switched Reluctance motors parallel drive system for the electrical traction in shearer</p><p>  The deviation of the average DC supplied current of the power conver

26、ter between the two Switched Reluctance motors at the moment of ti is </p><p>  where, Iin1 is the practical average DC supplied current of the power converter in the Switched Reluctance motor 1 at the momen

27、t of ti, Iin2 is the practical average DC supplied current of the power converter in the Switched Reluctance motor 2 at the moment of ti. </p><p>  The variation of the deviation of the average DC supplied c

28、urrent of the power converter between the two Switched Reluctance motors at the moment of ti is </p><p>  where, ei-1 is the deviation of the average DC supplied current of the power converter between the tw

29、o Switched Reluctance motors at the moment of ti-1. </p><p>  The duty ratio of the PWM signal of the Switched Reluctance motor 2 at the moment of ti is </p><p>  where, ΔD2(i) is the increment

30、 of the duty ratio of the PWM signal of the Switched Reluctance motor 2 at the moment of ti and D2(i-1) is the duty ratio of the PWM signal of the Switched Reluctance motor 2 at the moment of ti-1. </p><p> 

31、 The fuzzy logic algorithm could be expressed as follows, </p><p>  where, E is the fuzzy set of the deviation of the average DC supplied current of the power converter between the two Switched Reluctance mo

32、tors, EC is the fuzzy set of the variation of the deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors, and U is the fuzzy set of the increment of the duty ratio

33、of the PWM signal of the Switched Reluctance motor 2. </p><p>  The continuous deviation of the average DC supplied current of the power converter between the two Switched Reluctance motors could be changed

34、into the discrete amount at the interval [-5, +5], based on the equations as follows, </p><p>  The continuous variation of the deviation of the average DC supplied current of the power converter between the

35、 two Switched Reluctance motors could also be changed into the discrete amount at the interval [-5, +5], based on the equations as follows, </p><p>  The discrete increment of the duty ratio of PWM signal of

36、 the Switched Reluctance motor 2 at the interval [-5, +5] could be changed into the continuous amount at the interval [-1.0%, +1.0%], based on the equations as follows, </p><p>  There is a decision forms of

37、 the fuzzy logic algorithm based on the above principles, which was stored in the programme storage cell of the controller. </p><p>  While the difference of the distribution of the loads between the two Swi

38、tched Reluctance motors could be got, the duty ratio of PWM signal of the Switched Reluctance motor 2 will be regulated based on the decision forms of the fuzzy logic algorithm and the distribution of the loads between t

39、he two Switched Reluctance motors could be balanced. </p><p>  IV. TESTED RESULTS</p><p>  The developed double Switched Reluctance motors parallel drive system prototype had been tested experim

40、entally. Table I gives the tests results, where σ is the relative deviation of the average DC supplied current of the power converter in the Switched Reluctance motor 1, σ is the relative deviation of the average DC2 sup

41、plied current of the power converter in the Switched </p><p>  Reluctance motor 2, and, </p><p><b>  TABLE I.</b></p><p>  TESTS RESULTS OF PROTOTYPE</p><p>

42、;  It is shown that the relative deviation of the average DC supplied current of the power converter in the Switched Reluctance motor 1 and in the Switched Reluctance motor 2 is within ±10% . </p><p>  

43、V. CONCLUSION</p><p>  The paper presented the double Switched Reluctance motors parallel drive system for the electrical traction in shearer. The novel type of the shearer in coal mines driven by the Switch

44、ed Reluctance motors drive system contributes to reduce the fault ratio of the shearer, enhance the operational reliability of the shearer and increase the benefit of the coal mines directly. The drive type of the double

45、 Switched Reluctance motors parallel drive system could also contribute to enhance the operation</p><p>  REFERENCES </p><p>  [1] H. Chen, G. Xie, “A Switched Reluctance Motor Drive System for

46、Storage Battery Electric Vehicle in Coal Mine,” Proceedings of the 5th IFAC Symposium on Low Cost Automation, pp.95-99, Sept. 1998. </p><p>  [2] H. Chen, X. Meng, F. Xiao, T. Su, G. Xie, “Fault tolerant con

47、trol for switched reluctance motor drive,” Proceedings of the 28 Annual Conference of the IEEE Industrial Electronics Society, pp.1050-1054, Nov. 2002. </p><p>  [3] R. M. Davis, W. F. Ray, R. J. Blake, “Inv

48、erter drive for switched reluctance motor:circuit and component ratings,” IEE Proc. B, vol.128, no.3, pp. 126-136, Sept. 1981. </p><p>  [4] D. Liu, et al., Switched Reluctance Motor Drive. Beijing: Mechanic

49、al Industry Press, 1994. </p><p>  [5] H. Chen, J. Jiang, C. Zhang, G. Xie, “Analysis of the four-phase switched reluctance motor drive under the lacking one phase fault condition,” Proceedings of IEEE 5th A

50、sia-Pacific Conference on Circuit and Systems, pp.304-308, Dec. 2000. </p><p><b>  中文譯文</b></p><p>  電牽引采煤機的開關(guān)磁阻電動機</p><p>  摘要:本章介紹了電牽引采煤機雙重開關(guān)磁阻電動機的并聯(lián)驅(qū)動系統(tǒng)。該系統(tǒng)由開關(guān)磁阻電動機,功

51、率變換器電路和控制器組成。給出了由通過采用比例積分算法的調(diào)節(jié)轉(zhuǎn)子速度的閉環(huán)回路和模糊邏輯算法實現(xiàn)的負荷的均衡分布組成的控制策略。介紹了實驗結(jié)果。開關(guān)磁阻電動機1和開關(guān)磁阻電動機2的功率變換器的平均直流的相對誤差為。</p><p>  關(guān)鍵詞:開關(guān)磁阻;電動控制;采煤機;煤礦;電傳動</p><p><b> ?、?介紹</b></p><p>

52、;  煤礦的地下環(huán)境是非常惡劣的。一方面由于它是潮濕的,高粉塵的,和易燃的環(huán)境。另一方面,為了節(jié)約開采成本,巷道空間是有限,以至于設(shè)備很難維護。自動化設(shè)備在現(xiàn)代化煤礦已經(jīng)得到廣泛應(yīng)用。自動化設(shè)備的故障會直接影響到煤礦的產(chǎn)量和效益。采煤機是采煤的主要礦山設(shè)備。傳統(tǒng)的滾筒采煤機是通過液壓傳動系統(tǒng)傳動的。液壓傳動系統(tǒng)的故障率很高,因為液壓傳動系統(tǒng)的液體很容易受環(huán)境污染。液壓傳動系統(tǒng)的故障直接影響到煤礦的產(chǎn)量和效率。電傳動系統(tǒng)比液壓傳動系統(tǒng)的故

53、障率低。但是,礦井中電機傳動系統(tǒng)的散熱性差,是因為為了煤礦安全,電機傳動系統(tǒng)被封裝在防爆的外殼內(nèi)。電機傳動系統(tǒng)是自動化設(shè)備的重要組成部分。電機傳動系統(tǒng)的小說類型的發(fā)展對煤礦很重要。開關(guān)磁阻電動機傳動是煤礦調(diào)速傳動系統(tǒng)的主要設(shè)備,由于它的高工作可靠性和高容錯能力。由雙極點開關(guān)磁阻電動機,單級功率變換器和控制器組成的開關(guān)磁阻電動機傳動是電動機和功率變換器的核心。電動機沒有毛刷,功率變換器沒有雙極功率變換器的故障。開關(guān)磁阻電動機傳動可以在缺相

54、的情況下運行,它是依靠電動機和功率變換器相位獨立性來實現(xiàn)的。轉(zhuǎn)子上沒有繞組,以至于轉(zhuǎn)子上沒有銅損和很小的鐵損。因為不需要冷卻轉(zhuǎn)</p><p><b> ?、蛳到y(tǒng)組成</b></p><p>  電牽引采煤機的開關(guān)磁阻電動機傳動是一個雙重開關(guān)磁阻電動機并聯(lián)傳動系統(tǒng)。這個系統(tǒng)是由兩個開關(guān)磁阻電動機,一個控制箱,這個控制箱是安裝在功率變換器和控制器上。采用的開關(guān)磁阻電動機

55、是三相12/8結(jié)構(gòu)的開關(guān)磁阻電動機,如圖一所示。雙重開關(guān)磁阻電動機分別包裝在防爆外殼內(nèi)。電動機的額定功率是40KW,轉(zhuǎn)速是1155r/min,調(diào)速范圍是100r/min~1500r/min。</p><p>  圖一:三相12/8結(jié)構(gòu)的開關(guān)磁阻電動機</p><p>  功率變換器是由兩個三相不對稱橋式變換器并列組成。IGBTs是電路的主要開關(guān)元件。經(jīng)整流后三相交流380V電源提供給功率變

56、換器。功率變換器的主要電路如圖二所示。</p><p>  圖二:功率變換器的主要電路</p><p>  控制器由轉(zhuǎn)子位置檢測電路,整流電路,電流和電壓保護電路,主要開關(guān)的門極驅(qū)動電路和閉環(huán)調(diào)速數(shù)字控制器和負荷均衡分配組成。</p><p><b> ?、?控制方法</b></p><p>  采用同一個牽引方法,雙重

57、開關(guān)磁阻電動機通過傳送設(shè)備用來驅(qū)動采煤機,來確保雙重開關(guān)磁阻電動機的轉(zhuǎn)子速度同步運行。</p><p>  并聯(lián)驅(qū)動的雙重開關(guān)磁阻電動機的閉環(huán)轉(zhuǎn)子調(diào)速回路可以通過比例積分算法來實現(xiàn)。在開關(guān)磁阻電動機1中,功率變換器主要開關(guān)的觸發(fā)信號是通過PWM信號調(diào)制的。比較給定的轉(zhuǎn)子速度和實際的轉(zhuǎn)子速度,PWM的占空比調(diào)節(jié)如下:</p><p>  其中,是給定的轉(zhuǎn)子速度,是實際的轉(zhuǎn)子速度,是轉(zhuǎn)子速度的

58、差。在k時刻內(nèi),開關(guān)磁阻電動機1PWM信號占空比的增量。 是積分系數(shù), 比例系數(shù),轉(zhuǎn)子速度在K時間內(nèi)的差。轉(zhuǎn)子速度在K-1時間內(nèi)的差, 在k時刻內(nèi),開關(guān)磁阻電動機1PWM信號占空比,在k-1時刻內(nèi),開關(guān)磁阻電動機1PWM信號占空比。</p><p>  開關(guān)磁阻電動機傳動系統(tǒng)的輸出功率和功率變換器的電流成正比,如下所示:</p><p>  其中,是開關(guān)磁阻電動機傳動系統(tǒng)的輸出功率,功率變

59、換器的平均直流電流。</p><p>  在開關(guān)磁阻電動機2中,功率變換器主要開關(guān)的觸發(fā)信號是通過PWM信號調(diào)制的。雙重開關(guān)磁阻電動機之間的負荷均衡分布是通過模糊邏輯算法來實現(xiàn)的。在模糊邏輯調(diào)節(jié)器中有兩個輸入控制參數(shù),一個是雙重開關(guān)磁阻電動機之間的功率變換器的平均電流的偏差,另一個是雙重開關(guān)磁阻電動機之間的功率變換器的平均直流電流的偏差的變化。輸出控制參數(shù)是開關(guān)磁阻電動機2 PWM信號占空比的增量。電牽引采煤機雙

60、重開關(guān)磁阻電動機并列傳動系統(tǒng)的方框圖見圖三所示。</p><p>  圖三: 電牽引采煤機并列傳動系統(tǒng)的方框圖</p><p>  功率變換器平均直流電流在雙重開關(guān)磁阻電動機之間的偏差在時刻為:</p><p>  其中,在時刻,功率變換器在開關(guān)磁阻電動機1中實際平均直流電流,在時刻,功率變換器在開關(guān)磁阻電動機2中實際平均直流.</p><p&g

61、t;  雙重開關(guān)磁阻電動機在時刻的功率變換器平均直流電流的偏差的變量為:</p><p>  其中, 是雙重開關(guān)磁阻電動機在時刻的功率變換器平均電流的偏差。</p><p>  開關(guān)磁阻電動機2在時的PWM信號的占空比為:</p><p>  其中,在時刻的PWM信號占空比的增量,是開關(guān)磁阻電動機2在時刻的PWM信號的占空比。</p><p>

62、;  模糊邏輯算法用以下來表示:</p><p>  其中,為模糊集合開關(guān)磁阻電動機間的功率變換器的平均直流電流的相對誤差,為模糊集合開關(guān)磁阻電動機間的功率變換器的平均直流電流的相對誤差的變量,為模糊集合中開關(guān)磁阻電動機2 PWM信號占空比的增量。</p><p>  開關(guān)磁阻電動機間的功率變換器的平均直流電流的相對誤差在[-5,+5]區(qū)間內(nèi)的連續(xù)偏差可以轉(zhuǎn)變?yōu)榉稚⑵?。公式如下?lt;

63、/p><p>  開關(guān)磁阻電動機間的功率變換器的平均直流電流的相對誤差在區(qū)間內(nèi)的連續(xù)變量可以轉(zhuǎn)變?yōu)榉稚⒆兞俊9饺缦拢?lt;/p><p>  在區(qū)間[-5,+5]內(nèi),開關(guān)磁阻電動機2的功率變換器PWM信號的占空比的分散增量可以轉(zhuǎn)變?yōu)樵趨^(qū)間[-1.0%,+1.0%]內(nèi)的連續(xù)增量,公式如下:</p><p>  根據(jù)上面的原理,這里是模糊邏輯算法的一個判定形式。模糊邏輯算法是

64、存儲在控制器的程序存儲單元內(nèi)。</p><p>  當(dāng)檢測到雙重開關(guān)磁阻電動機負荷分配差異的時候,開關(guān)磁阻電動機2中的PWM占空比將被調(diào)節(jié),這是根據(jù)模糊邏輯算法的判定形式,從而,雙重開關(guān)磁阻電動機負荷分配將會達到平衡狀態(tài)。</p><p><b>  Ⅳ.實驗結(jié)果</b></p><p>  發(fā)展的雙重開關(guān)磁阻電動機并聯(lián)傳動系統(tǒng)樣機已經(jīng)通過實驗

65、測量得到了。表一給出了測試結(jié)果,其中為開關(guān)磁阻電動機1的功率變換器的平均直流電流的相對誤差,為開關(guān)磁阻電動機2的功率變換器的平均直流電流的相對誤差,即:</p><p>  表一:樣機的實驗結(jié)果</p><p>  該表顯示了開關(guān)磁阻電動機1和開關(guān)磁阻電動機2的功率變換器的平均直流的相對誤差為</p><p><b> ?、酰Y(jié)論</b><

66、;/p><p>  本章介紹了電牽引采煤機雙重開關(guān)磁阻電動機的并聯(lián)驅(qū)動系統(tǒng)。開關(guān)磁阻電動機驅(qū)動系統(tǒng)驅(qū)動了礦井中的小型采煤機有助于減少采煤機的故障率,提高了采煤機的工作可靠性,直接增加了煤礦的效益。相對于單級開關(guān)磁阻電動機的驅(qū)動,雙重開關(guān)磁阻電動機并聯(lián)傳動系統(tǒng)的驅(qū)動也有助于提高工作可靠性。</p><p>  REFERENCES </p><p>  [1] H. Ch

67、en, G. Xie, “A Switched Reluctance Motor Drive System for Storage Battery Electric Vehicle in Coal Mine,” Proceedings of the 5th IFAC Symposium on Low Cost Automation, pp.95-99, Sept. 1998. </p><p>  [2] H.

68、Chen, X. Meng, F. Xiao, T. Su, G. Xie, “Fault tolerant control for switched reluctance motor drive,” Proceedings of the 28 Annual Conference of the IEEE Industrial Electronics Society, pp.1050-1054, Nov. 2002. </p>

69、<p>  [3] R. M. Davis, W. F. Ray, R. J. Blake, “Inverter drive for switched reluctance motor:circuit and component ratings,” IEE Proc. B, vol.128, no.3, pp. 126-136, Sept. 1981. </p><p>  [4] D. Liu,

70、et al., Switched Reluctance Motor Drive. Beijing: Mechanical Industry Press, 1994. </p><p>  [5] H. Chen, J. Jiang, C. Zhang, G. Xie, “Analysis of the four-phase switched reluctance motor drive under the lac

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論