版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
1、<p><b> 中文2400字</b></p><p> 西昆侖地區(qū)卡蘭古MVT型鉛鋅礦床成礦作用和成礦物質(zhì)來源探討</p><p> 1 區(qū)域成礦背景概述</p><p> 塔木鉛鋅礦床位于阿克陶縣塔木村北約5 km,大地構(gòu)造位置為西昆侖造山帶與塔里木板塊的交接部位[1],屬庫斯拉甫-他龍鉛鋅(銅)成礦帶的一部分。<
2、/p><p> 本區(qū)前震旦紀(jì)末期陸殼裂解形成塔里木板塊、西昆侖地體、帕米爾板塊等。加里東期塔里木板塊沿庫地北斷裂(俯沖帶)往南西向西昆侖地體俯沖,形成昆中巖漿弧;兩者于志留紀(jì)末期拼貼為一體[2]。加里東期花崗質(zhì)巖漿侵入時代的變化趨勢佐證了這一觀點[3]。晚古生代時受古特提斯裂解作用的影響,俯沖帶遷移到康西瓦斷裂帶附近,板塊俯沖方向由南西往北東,西昆侖中帶成為晚古生代巖漿弧(即昆中多期巖漿弧)[4],庫斯拉甫-他龍地
3、區(qū)正處于弧后位置,在板塊俯沖的影響下發(fā)展為晚古生代弧后裂谷(即奧依塔格-庫爾良裂陷槽)。隨著古特提斯洋的消亡,庫斯拉甫-他龍晚古生代裂谷盆地于二疊紀(jì)末期閉合。三疊紀(jì)時期本區(qū)處于隆起剝蝕狀態(tài),缺失沉積。侏羅紀(jì)為山間盆地相與間夾沼澤相沉積。至白堊紀(jì)末與早第三紀(jì)早期,因受新特提斯裂谷化作用遭受一次海侵,形成一套淺海至湖相的沉積巖系。在喜馬拉雅期造山運動的作用下,新特提斯洋閉合,青藏高原崛起,盆山構(gòu)造急劇分野,引起本區(qū)西昆侖前緣大規(guī)模的逆沖推覆
4、和走滑,形成鐵克力克推覆體等構(gòu)造,奠定了現(xiàn)今的構(gòu)造格局。因此,庫斯拉甫-他龍鉛鋅(銅)成礦帶所處的大地構(gòu)造位置為晚古生代弧后裂谷盆地)))具陸殼基底的奧依塔格</p><p> 塔木MVT型鉛鋅礦區(qū)及外圍主要出露上泥盆統(tǒng)、石炭系、侏羅系與白堊系)第三系地層,褶皺構(gòu)造為科克然達坂復(fù)式向斜東翼的塔木向斜,區(qū)域斷裂有克孜勒陶-庫斯拉甫北北西向走滑斷裂系與北西向昆北逆沖推覆斷裂系。區(qū)內(nèi)構(gòu)造線總體為北西向,斷裂構(gòu)造較發(fā)育
5、,變形強烈,沿斷裂構(gòu)造帶往往發(fā)育動力變質(zhì)和構(gòu)造蝕變現(xiàn)象。</p><p><b> 2 礦床地質(zhì)特征</b></p><p> 塔木礦區(qū)內(nèi)出露地層主要為下石炭統(tǒng)卡拉巴西塔克組(C1k1)。本套地層在礦區(qū)可分為三個巖性段:第一巖性段為灰白色厚層狀碎裂白云質(zhì)、泥質(zhì)、硅質(zhì)灰?guī)r,是重要的含礦層位;第二巖性段為灰黑色鈣質(zhì)頁巖;第三巖性段為灰色中)薄層狀灰?guī)r、砂質(zhì)灰?guī)r,富含古
6、生物化石(圖1)。</p><p> 圖1 塔木礦床礦區(qū)地質(zhì)圖</p><p> 礦床由5條礦體組成,產(chǎn)于卡拉巴西塔克組第一巖性段中,礦化范圍較廣(長約800 m,寬可達40m),但僅1號礦體具工業(yè)意義。</p><p> (1)礦體特征:以似層狀為主,并有分枝現(xiàn)象,產(chǎn)狀與圍巖基本一致。方鉛鋅礦石貧富礦交替出現(xiàn),礦化不均勻;閃鋅礦則礦化較均勻,品位較穩(wěn)定<
7、;/p><p> (2)礦石類型、結(jié)構(gòu)構(gòu)造與礦物共生組合:礦石類型在第一階段為致密塊狀礦石,以鋅為主;第二階段為脈狀礦石,以鉛為主。方鉛礦多為半自形)他形粒狀結(jié)構(gòu),閃鋅礦多為頁片狀或他形粒狀結(jié)構(gòu);粗粒和細粒往往混雜,鉛、鋅緊密共生。金屬礦物主要有方鉛礦、閃鋅礦、黃鐵礦等;次生礦物有鉛、鋅及鐵、錳等氧化物;脈石礦物為白云石、方解石、石英、白云母等。礦化碳酸鹽巖中,白云石平均含量40%,最高可達60%;方解石一般為5%
8、,最高可達25%(鏡下目估)。白云石和方鉛礦、閃鋅礦均具多期成礦性;礦物大致生成順序為:方解石、白云石、黃鐵礦、方鉛礦、閃鋅礦。</p><p> (3)圍巖蝕變以白云石化、方解石化為主,其次為硅化。</p><p> 白云石化可分為三類:a.細-中粒白云石化,粒徑0.06~0.16 mm,粒狀結(jié)構(gòu),層狀構(gòu)造與成礦關(guān)系密切;b.形態(tài)不規(guī)則,粒徑0.1~0.2 mm,菱形節(jié)理發(fā)育,礦化范
9、圍廣,是成礦的良好地段;c.白云石呈團塊狀、顆粒狀、浸染狀分布在白云石化發(fā)育地段。礦體上、下盤的白云石化灰?guī)r其MgO含量為18.91%~20.34%,CaO含量為19.51%~24.06%。</p><p> 方解石化:呈脈狀、網(wǎng)脈狀和透鏡狀,一般閃鋅礦在靠近方解石一側(cè)結(jié)晶較粗,方鉛礦在外,結(jié)晶較細,黃鐵礦在外圍呈膠體狀。硅化:由于構(gòu)造的影響,分布較廣,蝕變深淺因地而異,在構(gòu)造破碎帶細的地段,硅化一般較強,石英
10、呈脈狀、網(wǎng)脈狀、透鏡狀分布于灰?guī)r及白云巖中,與礦化關(guān)系不密切。</p><p> 3 與密西西比河谷型鉛鋅礦的對比</p><p> 將塔木鉛鋅礦床與密西西比河谷型鉛鋅礦床進行對比(表3),可知二者有許多的相似之處。(1)礦床明顯受巖性巖相變異帶、高滲透帶、白云石化等的控制,在與區(qū)域構(gòu)造線方向(北西)北北西向)不一致的褶皺構(gòu)造(北西西向)中最有利于鉛鋅富集成礦。(2)礦區(qū)內(nèi)角礫巖發(fā)育,
11、構(gòu)造類型大致有同生角礫和熱液溶蝕、坍塌形成的角礫。部分礦石也呈角礫狀構(gòu)造,表明構(gòu)造運動直接控制礦化作用。(3)塔木礦床的成礦地質(zhì)條件、主要礦化特征和控礦因素均與密西西比河谷型鉛鋅礦極為相似[7,8]</p><p> 4 鉛、硫同位素和稀土元素分析</p><p> 本次研究,得到鉛同位素比值為(表5):206PbP204 Pb為17.923~17.976,207PbP204Pb為15
12、.552~15.602,208PbP204Pb為38.32~38.156,<值為0.610~0.612,L值為9.43~9.52,ThPU為3.81~3.84,計算出的表面年齡為461~481 Ma(早于泥盆紀(jì)438~410Ma)。表明成礦作用過程中的主要成礦物質(zhì)可能來源于前泥盆系地層。 TMB-13,-5和-11三個方鉛礦硫同位素測試的,D34S分別為-1.98j、3.67j和-5.04j(宜昌地質(zhì)礦產(chǎn)研究所測定,測試精度0.
13、002),這與油田鹵水的硫同位素組成相似,且與有機硫、硫酸鹽硫有明顯的差異,反映了油田鹵水與深層鹵水的混合特征。由稀土元素分析數(shù)據(jù)得出巖(礦)石P球粒隕石標(biāo)準(zhǔn)化分配模式圖(圖2)表明,圍巖與礦石的稀土成分基本一致,均具較弱的負Eu異常和較明顯的負Tm異常,輕稀土相對重稀土較富集,說明成礦物質(zhì)主要來自于地層之中[10]。</p><p><b> 5 結(jié) 論</b></p>&
14、lt;p> (1)塔木鉛鋅礦床的成礦物質(zhì)Pb、Zn主要來源于前泥盆系,泥盆-石炭系地層僅起鉛鋅礦寄主巖石的作用。</p><p> (2)硫同位素組成反映了油田鹵水與深成鹵水的混合特征,說明大規(guī)模的熱鹵水運移、循環(huán)、改造,對本礦床的成礦起到了重要作用。礦石和圍巖的微量元素地球化學(xué)特征也說明了這一點。</p><p> (3)礦區(qū)內(nèi)角礫巖和角礫狀礦石發(fā)育,說明構(gòu)造運動對礦化的直接
15、控制。</p><p> (4)海西期、喜馬拉雅期是區(qū)內(nèi)兩次最為重要的成礦階段,其中喜馬拉雅期的逆沖推覆褶皺[11]作用引發(fā)了大規(guī)模的熱鹵水運移、循環(huán),使成礦物質(zhì)得以在有利的容礦部位沉淀成礦。</p><p> (5)白云石化可作為該區(qū)重要的找礦標(biāo)志之一。在與區(qū)域構(gòu)造線方向不一致的褶皺構(gòu)造中應(yīng)注意加大找礦力度。</p><p> (6)塔木礦床的深、邊部,尚未
16、進行工程控制,后期構(gòu)造的破礦、成礦作用還有待于研究,尚有較大的找礦空間存在。</p><p> Study on Metallogenetic Process of Tamu MVT Type Lead-Zinc OreDeposit and the Source of Metallogenetic Material in West of Kunlun</p><p> Abstrac
17、t: MVT lead-zinc deposit is a very important lead-zinc deposit type in west of Kunlun. In order to probe into metal genetic process of Tamu lead-zinc deposit and the source of metal genetic material, the authors made a d
18、etail field investigation and collected many samples. Based on the abundant information fromrock-mineral identifying, Pb-S isotope measuring, rare earth element analysising about Tamu MVT lead-zinc deposit,D34SCDTis -5.0
19、4j~+3.67j,with themixed features between oil field br</p><p> 1 Zone mineralization Background Overview</p><p> Tamu lead-zinc beds in Akto County tower Kimura NATO 5 km, the the tectonic posi
20、tion for the transfer of parts of the West Kunlun orogenic belt and the Tarim plate [1], is the Kusi La Fu - Long lead-zinc mineralization (copper) with part of it.</p><p> The area before the end of the Si
21、nian continental crust cracked into the Tarim plate, West Kunlun terrane, Pamir plate on. The Caledonian the Tarim plate along Kudi North fracture (subduction zone) to the southwest to the western Kunlun terrane subducti
22、on formed Queensland magmatic arc; both Silurian the Ji final collage as a whole [2]. Caledonian granitic magma intrusion the trend of the times in support of this view [3]. Late Paleozoic Paleo-Tethys cracking is, subdu
23、ction zone to migrate to ne</p><p> Tamu Tamu MVT Pb-Zn and peripheral of the Upper Devonian, Carboniferous, Jurassic and Cretaceous) Tertiary strata, fold structure is the Cork contingent Daban complex syn
24、cline, East Wing, syncline regional faults in Kyzyl Tao - the Kusi La just north-northwest trending strike-slip fault system and the North West to Kun North inverse nappe fault system. Tectonic Line in the region overall
25、 NW-trending fault structure is developed, strongly deformed, often developed along the fault structure with d</p><p> 2 geological features</p><p> The exposed strata Tamu mine mainly the Low
26、er Carboniferous Kara Brazil Tucker group (C1k1). The strata in the mining area can be divided into three lithologic the: first lithologic of gray thick-layered fragmentation dolomitic, argillaceous, siliceous limestone,
27、 is an important ore-bearing horizon; second lithologic gray and black calcareous shale; lithologic gray) thin-bedded limestone, sandy limestone, rich in fossils (Figure 1).</p><p> Fig.1 Geological map of
28、Tamu lead-zinc deposit</p><p> The deposit consists of five ore bodies, produced in Kara Brazil Tucker lithologic, a wider range of mineralization (about 800 m, width up to 40m), but only 1 orebody with ind
29、ustrial significance.</p><p> (1) ore body characteristics: stratiform, branching phenomenon, the occurrence and the surrounding rock is basically the same. Party lead-zinc ore mineral rich and poor alterna
30、ting uneven mineralization; the sphalerite mineralization uniform, stable grade</p><p> (2) ore type, texture and structure and mineral assemblages: ore types in the first stage as a dense block of ore, zin
31、c-based; second stage is a vein of ore, lead-based. Galena hypidiomorphic) anhedral granular structure sphalerite multi-page sheet or other forms granular structure; often mixed coarse and fine, lead, zinc closely associ
32、ated. Metallic minerals are mainly galena, sphalerite, pyrite; secondary minerals such as lead, zinc and iron, manganese oxides; gangue minerals are dolomite, cal</p><p> (3) wall-rock alteration dolomitiza
33、tion, calcite, followed by silicification.</p><p> Dolomitization can be divided into three categories: a fine - medium-grained dolomitized, particle size of 0.06 to 0.16 mm, granular structure, layered str
34、ucture and mineralization are closely related; b irregular particle size of 0.1 to 0.2 mm, diamond joint development, a wide range of mineralization, in good areas of mineralization; c dolomite lumps, granular, dissemina
35、ted distributed in the development of dolomitization lot. Orebody, the dolomitization limestone of the footwall MgO content a</p><p> Calcite: as veins, stockwork and lenticular, generally sphalerite in clo
36、se proximity to the side of the calcite crystal thick, and galena outside, crystallization smaller, colloidal pyrite was in the periphery. Silicide: Due to the impact of the structure, wide distribution, alteration shade
37、s vary from place to fault or fracture fine lots, generally strong silicification, quartz veined stockwork, lenticular located in the limestone and dolomite and mineralization relationship is not close.</p><p&
38、gt; 3 and the comparison of Mississippi Valley-type lead-zinc</p><p> Tamu lead-zinc deposits and Mississippi Valley-type lead-zinc deposits were compared (Table 3), we can see that there are many similari
39、ties between the two. (1) The deposit was significantly affected by lithology phase variation with high permeability with white clouds petrochemical control, in the direction of the regional structures (North West) NNW)
40、inconsistent fold structure (North West to) the most there is conducive to lead and zinc enrichment and mineralization. (2) mining area breccia d</p><p> 4 lead, sulfur isotopes and rare earth elements anal
41、ysis</p><p> In this study, the Pb isotopic ratios (Table 5): 206PbP204 Pb 17.923 ~ 17.976,207 PbP204Pb the 15.552 ~ 15.602,208 PbP204Pb to 38.32 to 38.156, <value of 0.610 to 0.612 L value of 9.43 to 9.
42、52, 3.81 for ThPU ~ 3.84, the calculated surface age of 461 to 481 Ma (Early Devonian 438 to 410mA). Indicating that the mineralization process into minerals may be derived from the former Devonian strata. TMB-13, -5 and
43、 -11 three parties galena sulfur isotope test, D34S-1.98j, 3.67j and 5.04j (Yichang Instit</p><p> 5 Conclusion</p><p> (1) Tamu lead-zinc deposits into mineral Pb, Zn comes mainly from the fo
44、rmer Devonian, Devonian - Carboniferous strata only play the role of lead-zinc mine host rocks.</p><p> (2) The sulfur isotope composition reflects the oilfield brines and deep brine mixed feature large-sca
45、le hot brine migration, circulation, transformation, and has played an important role in the mineralization. The trace element geochemistry of ore and rock.</p><p> (3) mine breccia and brecciated ore devel
46、oped, indicating the direct control of the tectonic movement of mineralization.</p><p> (4) Hercynian, the Himalayan region's two most important mineralization stages, Himalayan thrust nappe fold [11] T
47、he role led to a large-scale the hot brine migration cycle, so as minerals can be precipitated mineralization in favorable host site.</p><p> (5) dolomitization can be used as important prospecting the area
48、 one of the signs. Fold structure inconsistent with the direction of the regional structures should be noted that the increase prospecting efforts.</p><p> (6) Tamu deposit deep edge, has not yet been engin
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 57958.旬陽盆地下古生界鉛鋅礦床成礦作用
- 南京棲霞山鉛鋅礦床成礦作用研究.pdf
- 藏洞中拉熱液型鉛鋅礦床成礦作用研究.pdf
- 采礦專業(yè)外文翻譯---西藏洞中拉鉛鋅礦床成礦類型研究(節(jié)選)
- 若爾蓋碳硅泥巖型鈾礦床成礦物質(zhì)來源探討.pdf
- 68900.西秦嶺泥盆系統(tǒng)鉛鋅礦床的有機成礦作用
- 53590.論揚子地臺西緣層狀鉛鋅礦床熱水沉積成礦作用
- 青海錫鐵山碳質(zhì)片巖型鉛鋅礦床成礦模式探討
- 43020.云南老寨灣金礦床成礦物質(zhì)來源分析及礦床成因探討
- 20048.青海沱沱河盆地那日尼亞鉛鋅礦床成礦作用研究
- 66971.甘肅西成地區(qū)金、鉛鋅礦床成礦系列與時空分布規(guī)律
- 曲仁盆地北緣凡口式MVT鉛鋅礦床關(guān)鍵成礦控制系統(tǒng).pdf
- 馬元鉛鋅礦角礫巖成因及其成礦作用研究.pdf
- 12188.四川巴塘縣砂西銀鉛鋅多金屬礦床成礦物質(zhì)來源探討
- 44038.云南勐滿金礦床成礦物質(zhì)來源分析
- 福建尤溪丁家山鉛鋅礦礦床成因、成礦機理及成礦規(guī)律研究.pdf
- 39448.川滇黔地區(qū)低溫成礦域鉛鋅礦床成因初探
- 安徽東至兆吉口鉛鋅礦床和許村金礦床地球化學(xué)特征及成礦作用研究.pdf
- 凡口鉛鋅礦獅嶺礦區(qū)成礦作用與找礦預(yù)測.pdf
- 廣西佛子沖鉛鋅礦床礦物包裹體特征及成礦時代研究.pdf
評論
0/150
提交評論