通信工程畢業(yè)設(shè)計(jì)外文翻譯--通用移動(dòng)通信系統(tǒng)的回顧_第1頁(yè)
已閱讀1頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  螆節(jié)膂蚅螞節(jié)莄蒈肀芁蕆螄羆芀蕿薇袂艿艿螂螈袆莁薅蚄裊蒃螀羃羄膃薃衿羃芅蝿螅羂蕆薁螁羈薀蒄聿羀艿蝕羅羀莂蒃袁罿蒄蚈螇羈膄蒁蚃肇芆蚆羂肆莈葿袈肅薁蚅襖肄芀薇螀肄莃螃蚆肅蒅薆羄肂膄螁袀膁芇薄螆膀荿螀螞腿蒁薂羈膈芁蒞羇膈莃蟻袃膇蒆蒃蝿膆膅蠆蚅膅羋蒂羄芄莀蚇袀芃蒂蒀螆節(jié)膂蚅螞節(jié)莄蒈肀芁蕆螄羆芀蕿薇袂艿艿螂螈袆莁薅蚄裊蒃螀羃羄膃薃衿羃芅蝿螅羂蕆薁螁羈薀蒄聿羀艿蝕羅羀莂蒃袁罿蒄蚈螇羈膄蒁蚃肇芆蚆羂肆莈葿袈肅薁蚅襖肄芀薇螀肄莃螃蚆

2、肅蒅薆羄肂膄螁袀膁芇薄螆膀荿螀螞腿蒁薂羈膈芁蒞羇膈莃蟻袃膇蒆蒃蝿膆膅蠆蚅膅羋蒂羄芄莀蚇袀芃蒂蒀螆節(jié)膂蚅螞節(jié)莄蒈肀芁蕆螄羆芀蕿薇袂艿艿螂螈袆莁薅蚄裊蒃螀羃羄膃薃衿羃芅蝿螅羂蕆薁螁羈薀蒄聿羀艿蝕羅羀莂蒃袁罿蒄蚈螇羈膄蒁蚃肇芆蚆羂肆莈葿袈肅薁蚅襖肄芀薇螀肄莃螃蚆肅蒅薆羄肂膄螁袀膁芇薄螆膀荿螀螞腿蒁薂羈膈芁蒞羇膈莃蟻袃膇蒆蒃蝿膆膅蠆蚅膅羋蒂羄芄莀蚇袀芃蒂蒀螆節(jié)膂蚅螞節(jié)莄蒈肀芁蕆螄羆芀蕿薇袂艿艿螂螈袆莁薅蚄裊蒃螀羃羄膃薃衿羃芅蝿螅羂蕆薁螁羈薀蒄聿

3、羀艿蝕羅羀莂蒃袁罿蒄蚈螇羈膄蒁蚃肇芆蚆羂肆莈葿袈肅薁蚅襖肄芀薇螀肄莃螃蚆肅蒅薆羄肂膄螁袀膁芇薄螆膀荿螀螞腿蒁薂羈膈芁蒞羇膈莃蟻袃膇蒆蒃蝿膆膅蠆</p><p>  附件1:外文資料翻譯譯文</p><p>  通用移動(dòng)通信系統(tǒng)的回顧</p><p>  1.1 UMTS網(wǎng)絡(luò)架構(gòu)</p><p>  歐洲/日本的3G標(biāo)準(zhǔn),被稱為UMTS。 UM

4、TS是一個(gè)在IMT-2000保護(hù)傘下的ITU-T批準(zhǔn)的許多標(biāo)準(zhǔn)之一。隨著美國(guó)的CDMA2000標(biāo)準(zhǔn)的發(fā)展,它是目前占主導(dǎo)地位的標(biāo)準(zhǔn),特別是運(yùn)營(yíng)商將cdmaOne部署為他們的2G技術(shù)。在寫這本書時(shí),日本是在3G網(wǎng)絡(luò)部署方面最先進(jìn)的。三名現(xiàn)任運(yùn)營(yíng)商已經(jīng)實(shí)施了三個(gè)不同的技術(shù):J - PHONE使用UMTS,KDDI擁有CDMA2000網(wǎng)絡(luò),最大的運(yùn)營(yíng)商N(yùn)TT DoCoMo正在使用品牌的FOMA(自由多媒體接入)系統(tǒng)。 FOMA是基于原來的UM

5、TS協(xié)議,而且更加的協(xié)調(diào)和標(biāo)準(zhǔn)化。</p><p>  UMTS標(biāo)準(zhǔn)被定義為一個(gè)通過通用分組無(wú)線系統(tǒng)(GPRS)和全球演進(jìn)的增強(qiáng)數(shù)據(jù)技術(shù)(EDGE)從第二代GSM標(biāo)準(zhǔn)到UNTS的遷移,如圖。這是一個(gè)廣泛應(yīng)用的基本原理,因?yàn)樽?003年4月起,全球有超過847萬(wàn)GSM用戶,占全球的移動(dòng)用戶數(shù)字的68%。重點(diǎn)是在保持盡可能多的GSM網(wǎng)絡(luò)與新系統(tǒng)的操作。</p><p>  我們現(xiàn)在在第三代(3

6、G)的發(fā)展道路上,其中網(wǎng)絡(luò)將支持所有類型的流量:語(yǔ)音,視頻和數(shù)據(jù),我們應(yīng)該看到一個(gè)最終的爆炸在移動(dòng)設(shè)備上的可用服務(wù)。此驅(qū)動(dòng)技術(shù)是IP協(xié)議。現(xiàn)在,許多移動(dòng)運(yùn)營(yíng)商在簡(jiǎn)稱為2.5G的位置,伴隨GPRS的部署,即將IP骨干網(wǎng)引入到移動(dòng)核心網(wǎng)。在下圖中,圖2顯示了一個(gè)在GPRS網(wǎng)絡(luò)中的關(guān)鍵部件的概述,以及它是如何適應(yīng)現(xiàn)有的GSM基礎(chǔ)設(shè)施。</p><p>  SGSN和GGSN之間的接口被稱為Gn接口和使用GPRS隧道協(xié)議

7、(GTP的,稍后討論)。引進(jìn)這種基礎(chǔ)設(shè)施的首要原因是提供連接到外部分組網(wǎng)絡(luò)如,Internet或企業(yè)Intranet。這使IP協(xié)議作為SGSN和GGSN之間的運(yùn)輸工具應(yīng)用到網(wǎng)絡(luò)。這使得數(shù)據(jù)服務(wù),如移動(dòng)設(shè)備上的電子郵件或?yàn)g覽網(wǎng)頁(yè),用戶被起訴基于數(shù)據(jù)流量,而不是時(shí)間連接基礎(chǔ)上的數(shù)據(jù)量。3G網(wǎng)絡(luò)和服務(wù)交付的主要標(biāo)準(zhǔn)是通用移動(dòng)通信系統(tǒng),或UMTS。首次部署的UMTS是發(fā)行'99架構(gòu),在下面的圖3所示。</p><p&

8、gt;  在這個(gè)網(wǎng)絡(luò)中,主要的變化是在無(wú)線接入網(wǎng)絡(luò)(RAN的)CDMA空中接口技術(shù)的引進(jìn),和在傳輸部分異步傳輸模式作為一種傳輸方式。這些變化已經(jīng)引入,主要是為了支持在同一網(wǎng)絡(luò)上的語(yǔ)音,視頻和數(shù)據(jù)服務(wù)的運(yùn)輸。核心網(wǎng)絡(luò)保持相對(duì)不變,主要是軟件升級(jí)。然而,隨著目前無(wú)線網(wǎng)絡(luò)控制器使用IP與3G的GPRS業(yè)務(wù)支持節(jié)點(diǎn)進(jìn)行通信,IP協(xié)議進(jìn)一步應(yīng)用到網(wǎng)絡(luò)。</p><p>  未來的進(jìn)化步驟是第4版架構(gòu),如圖4。在這里,GSM

9、的核心被以語(yǔ)音IP技術(shù)為基礎(chǔ)的IP網(wǎng)絡(luò)基礎(chǔ)設(shè)施取代。</p><p>  海安的發(fā)展分為兩個(gè)獨(dú)立部分:媒體網(wǎng)關(guān)(MGW)和MSC服務(wù)器(MSS)的。這基本上是打破外連接的作用和連接控制。一個(gè)MSS可以處理多個(gè)MGW,使網(wǎng)絡(luò)更具有擴(kuò)展性。</p><p>  因?yàn)楝F(xiàn)在有一些在3G網(wǎng)絡(luò)的IP云,合并這些到一個(gè)IP或IP/ ATM骨干網(wǎng)是很有意義的(它很可能會(huì)提供兩種選擇運(yùn)營(yíng)商)。這使IP權(quán)利拓

10、展到整個(gè)網(wǎng)絡(luò),一直到BTS(基站收發(fā)信臺(tái))。這被稱為全I(xiàn)P網(wǎng)絡(luò),或推出五架構(gòu),如圖五所示。在HLR/ VLR/VLR/EIR被推廣和稱為HLR的子系統(tǒng)(HSS)。</p><p>  現(xiàn)在傳統(tǒng)的電信交換的最后殘余被刪除,留下完全基于IP協(xié)議的網(wǎng)絡(luò)運(yùn)營(yíng),并推廣了許多服務(wù)類型的運(yùn)輸。實(shí)時(shí)服務(wù)通過引入一個(gè)新的網(wǎng)絡(luò)域名得到支持,即IP多媒體子系統(tǒng)(IMS)。</p><p>  目前3GPP作用于

11、第6版,意在包含冷凍版本沒有涵蓋所有方面。有些人稱UMTS 第6版為4G和它包括熱點(diǎn)無(wú)線電接入技術(shù),如無(wú)線局域網(wǎng)互聯(lián)互通的問題。</p><p>  1.2 UMTS的FDD和TDD</p><p>  像任何CDMA系統(tǒng),UMTS需要一個(gè)寬的頻帶,在這個(gè)頻帶上有效地傳播信號(hào)。該系統(tǒng)的特點(diǎn)是芯片的速度,芯片是一個(gè)符號(hào)的CDMA代碼的寬度。 UMTS使用的芯片速率為3.84Mchips/秒,

12、這轉(zhuǎn)換到所需的頻譜載波寬度為5MHz。由于這比現(xiàn)有的cdmaOne系統(tǒng)所需的1.25MHz帶寬要寬,UNTS空中接口被稱為“寬帶”CDMA.</p><p>  實(shí)際上在UMTS下有兩個(gè)無(wú)線電技術(shù):UMTS軟盤驅(qū)動(dòng)器和時(shí)分雙工。FDD代表頻分雙工,如GSM,通過把它們放置在不同的頻率信道分離為交通上行和下行。因此,一個(gè)運(yùn)營(yíng)商必須有一對(duì)頻率分配,使他們能夠運(yùn)行網(wǎng)絡(luò),即術(shù)語(yǔ)成對(duì)頻譜。TDD或時(shí)分雙工只需要一個(gè)頻率通道

13、,上行和下行流量是在不同的時(shí)間分開發(fā)送。 ITU-T的頻譜使用,如在圖6所示。對(duì)于FDD是1920 - 1980MHz的為上行流量,2110-2170MHz為下行的。運(yùn)營(yíng)商需要的最小分配是兩個(gè)成對(duì)5MHz的信道,一個(gè)用于上行,一個(gè)用于下行的,兩者相分離190MHz。然而,為了給客戶提供全面的覆蓋和服務(wù),建議給予每個(gè)運(yùn)營(yíng)商三個(gè)信道。考慮到頻譜分配,有12對(duì)可用的渠道,現(xiàn)在許多國(guó)家都完成了這個(gè)頻譜的許可過程,每個(gè)許可證配置兩個(gè)到四個(gè)信道。這

14、趨向給運(yùn)營(yíng)商造成一個(gè)昂貴的花費(fèi),因?yàn)橐恍﹪?guó)家的監(jiān)管部門,特別是在歐洲,已經(jīng)將這些許可證拍賣給出價(jià)最高的人。這就造成了頻譜費(fèi)用在一些國(guó)家高達(dá)數(shù)十億美元。</p><p>  時(shí)分雙工(TDD)系統(tǒng),只需要一個(gè)5MHz的帶寬在其中操作,通常被稱為非成對(duì)頻譜。UMTS FDD和TDD之間的差異只有在較低層明顯,特別是在無(wú)線接口。在更高的層次,兩個(gè)系統(tǒng)的運(yùn)作大部分是相同的。正如它的名字表明,TDD系統(tǒng)通過把它們放置在不同

15、的時(shí)間空擋分為上行流量和下行流量。正如我們以后可以看到的, UMTS使用一個(gè)分為15個(gè)相等的時(shí)隙的10ms幀結(jié)構(gòu)。 時(shí)分雙工可以分配這些為上行或下行,在一個(gè)確定的幀結(jié)構(gòu)中這兩者間可以有一個(gè)或多個(gè)斷點(diǎn)。以這種方式,這是非常適合數(shù)據(jù)包通信的,因?yàn)檫@對(duì)于不對(duì)稱的通信流的動(dòng)態(tài)標(biāo)注可以有極大的靈活性。</p><p>  TDD系統(tǒng)真的不應(yīng)該被視為一個(gè)獨(dú)立的網(wǎng)絡(luò),而是作為一個(gè)FDD系統(tǒng)的補(bǔ)充,提供更高的數(shù)據(jù)傳輸率的熱點(diǎn)覆蓋

16、。由于站點(diǎn)之間的干擾,它相當(dāng)不合適用作大規(guī)模部署,因?yàn)橐粋€(gè)基站可以嘗試從UE檢測(cè)微弱信號(hào),這被來自鄰近基站的相同頻率的相對(duì)較強(qiáng)的信號(hào)阻止了。 時(shí)分雙工對(duì)于小面積的室內(nèi)覆蓋是理想的。</p><p>  由于FDD是目前正在發(fā)展的主要的接入技術(shù),這里介紹的解釋將完全專注于這個(gè)系統(tǒng)。</p><p>  1.3 UMTS承載模型</p><p>  移動(dòng)設(shè)備連接到UMT

17、S網(wǎng)絡(luò)的程序可以分成兩領(lǐng)域:接入層(AS)和非接入層(NAS)。接入層涉及所有提供普遍服務(wù)的非接入層和子系統(tǒng)階層。在UMTS接入層包括無(wú)線接入的所有元素網(wǎng)絡(luò),包括潛在的ATM傳輸網(wǎng)絡(luò),各種機(jī)制提供可靠的信息交換等。所有的非接入層功能都在移動(dòng)設(shè)備和核心網(wǎng)絡(luò)之間,例如,移動(dòng)性管理。圖7顯示了結(jié)構(gòu)模型。AS通過使用服務(wù)接入點(diǎn)(SAPS)與NAS交互。</p><p>  UMTS無(wú)線接入網(wǎng)(UTRAN)提供NAS和AS

18、功能的分離,并允許AS功能在UTRAN中被完全控制和實(shí)施。兩大UTRAN的接口是UU,這是移動(dòng)設(shè)備之間的接口,或者用戶設(shè)備(UE)和UTRAN之間,Iu,這是UTRAN和核心網(wǎng)之間的接口。這些接口都可以分為控制平面和用戶平面,每個(gè)都有適當(dāng)?shù)膮f(xié)議功能。承載服務(wù)是兩點(diǎn)間的連接,這是由一組特定的特點(diǎn)定義的。在UMTS的情況下,使用無(wú)線接入承載提供承載服務(wù)。</p><p>  無(wú)線接入承載(RAB)被定義為用戶設(shè)備和核

19、心網(wǎng)絡(luò)之間的服務(wù),即接入層(ieUTRAN)為非接入層提供用戶數(shù)據(jù)傳輸。一個(gè)RAB可以由一些支流組成,這是數(shù)據(jù)流在有不同的QoS特性的RAB流向核心網(wǎng)絡(luò),如不同的可靠性。一個(gè)常見的??例子是不同類別的位有不同的位錯(cuò)誤率,可以實(shí)現(xiàn)不同的RAB子流。RAB子流在RAB建立和釋放的同時(shí)建立和釋放,并通過相同的傳輸承載一起傳輸。</p><p>  無(wú)線電鏈路被定義為一個(gè)單一的用戶設(shè)備(UE)和一個(gè)單一的UTRAN接入點(diǎn)

20、之間的邏輯關(guān)聯(lián),如一個(gè)RNC。它實(shí)際上是由一個(gè)或多個(gè)無(wú)線承載組成和不應(yīng)和無(wú)線接入承載混淆。</p><p>  在UTRAN內(nèi)部來看,總體架構(gòu)模型在下面的圖8所示?,F(xiàn)在顯示的是節(jié)點(diǎn)B基站(BTS)和無(wú)線網(wǎng)絡(luò)控制器(RNC)組件,以及它們各自的內(nèi)部接口。UTRAN分為被稱為無(wú)線網(wǎng)絡(luò)子系統(tǒng)(RNS)的塊,其中每個(gè)RNS由一個(gè)控制RNC和控制下的所有基站組成。UMTS的獨(dú)特之處是RNS之間的接口,Iur接口,在交接過程

21、起了關(guān)鍵作用?;竞蚏NC之間的接口是Iub接口。</p><p>  所有“I”接口:Iu,Iur和Iub,currently3將ATM用作傳輸層。在ATM的背景下,BTS被看作是ATM網(wǎng)絡(luò)的主機(jī)訪問,在這個(gè)網(wǎng)絡(luò)中RNC是一個(gè)ATM交換機(jī)。因此,Iub是一個(gè)UNI接口,而Iu和Iur接口被認(rèn)為是NNI,如圖9所示。</p><p>  這種區(qū)別是因?yàn)榛镜絉NC的鏈接是一個(gè)點(diǎn)至點(diǎn)連接,在

22、這個(gè)連接中一個(gè)基站或RNC只和與它直接連接的RNC或基站通信,并且不會(huì)要求和其他網(wǎng)絡(luò)元素的元素。</p><p>  對(duì)于每個(gè)用戶連接到核心網(wǎng)絡(luò),這里只有一個(gè)RNC,保持UE和核心網(wǎng)域之間的聯(lián)系,在圖10中突出顯示。RNC是指服務(wù)RNC或SRNC。SRNC加上在其控制下的基站被稱為SRNS。這是一個(gè)只以UE為參考的邏輯定義。在一個(gè)RNS中,控制基站的RNC被稱為控制RNC或CRNC。這是以基站為參考,其控制下的部

23、分和所有常見的和共享的渠道內(nèi)。</p><p>  因?yàn)閁E移動(dòng),它可能執(zhí)行軟或硬切換到另一個(gè)蜂窩。在軟切換的情況下,SRNC將啟動(dòng)新的連接到新的基站。新的基站應(yīng)該是在另一個(gè)RNC控制下,SRNC中也會(huì)提醒這個(gè)新的RNC啟動(dòng)沿Iur接口連接。UE現(xiàn)在有兩個(gè)連接,一個(gè)直接連接SRNC,第二個(gè)通過新的RNC連接Iur接口。在這種情況下,這個(gè)新的RNC在邏輯上被稱為漂移RNC或DRNC,見圖10。它不涉及任何呼叫處理,

24、只是將它中繼到SRNC以連接核心網(wǎng)絡(luò),總之,SRNC和DRNC通常與UE相關(guān)聯(lián),CRNC與BTS相關(guān)聯(lián)。由于這些是邏輯功能,一個(gè)單一的RNC是能夠處理所有這些功能是很正常的做法。</p><p>  一個(gè)UE連接到基站,它的SRNC并不是這個(gè)基站的控制RNC,這種情況可能會(huì)出現(xiàn)。在這種情況下,這個(gè)網(wǎng)絡(luò)可以調(diào)用SRNC的搬移程序來移動(dòng)核心網(wǎng)絡(luò)的連接。在第3節(jié)將介紹此過程。</p><p>&

25、lt;b>  附件2:外文原文</b></p><p>  Review of UMTS</p><p>  1.1 UMTS Network Architecture</p><p>  The European/Japanese 3G standard is referred to as UMTS. UMTS is one of a numbe

26、r of standards ratified by the ITU-T under the umbrella of IMT-2000. It is currently the dominant standard, with the US CDMA2000 standard gaining ground, particularly with operators that have deployed cdmaOne as their 2G

27、 technology. At time of writing,Japan is the most advanced in terms of 3G network deployment. The three incumbent operators there have implemented three different technologies: J-Phone is using UMTS,K</p><p>

28、;  The UMTS standard is specified as a migration from the second generation GSM standard to UMTS via the General Packet Radio System (GPRS) and Enhanced Data for Global Evolution (EDGE), as shown in Figure. This is a sou

29、nd rationale since as of April 2003, there were over 847 Million GSM subscribers worldwide1, accounting for</p><p>  68% of the global cellular subscriber figures. The emphasis is on keeping as much of</p

30、><p>  the GSM network as possible to operate with the new system.</p><p>  We are now well on the road towards Third Generation (3G), where the network will support all traffic types: voice, video

31、 and data, and we should see an eventual explosion in the services available on the mobile device. The driving technology for this is the IP protocol. Many cellular operators are now at a position referred to as 2.5G, wi

32、th the deployment of GPRS, which introduces an IP backbone into the mobile core network.The diagram below, Figure 2, shows an overview of the key components in</p><p>  The interface between the SGSN and GGS

33、N is known as the Gn interface and uses the GPRS tunneling protocol (GTP, discussed later). The primary reason for the introduction of this infrastructure is to offer connections to external packet networks, such as the

34、Internet or a corporate Intranet.</p><p>  This brings the IP protocol into the network as a transport between the SGSN and GGSN. This allows data services such as email or web browsing on the mobile device,

35、with users being charged based on volume of data rather than time connected.</p><p>  The dominant standard for delivery of 3G networks and services is the Universal Mobile Telecommunications System, or UMTS

36、. The first deployment of UMTS is the Release ’99 architecture, shown below in Figure 3.</p><p>  In this network, the major change is in the radio access network (RAN) with the introduction of CDMA technolo

37、gy for the air interface, and ATM as a transport in the transmission part. These changes have been introduced principally to support the transport of voice, video and data services on the same network. The core network r

38、emains relatively unchanged, with primarily software upgrades. However, the IP protocol pushes further into the network with the RNC now communicating with the 3G SGSN us</p><p>  The next evolution step is

39、 the Release 4 architecture, Figure 4. Here, the GSM core is replaced with an IP network infrastructure based around Voice over IP technology.</p><p>  The MSC evolves into two separate components: a Media G

40、ateway (MGW) and an MSC Server (MSS). This essentially breaks apart the roles of connection and connection control. An MSS can handle multiple MGWs, making the network more scaleable.</p><p>  Since there ar

41、e now a number of IP clouds in the 3G network, it makes sense to merge these together into one IP or IP/ATM backbone (it is likely both options will be available to operators.) This extends IP right across the whole netw

42、ork, all the way to the BTS.This is referred to as the All-IP network, or the Release 5 architecture, as shown in Figure 5. The HLR/VLR/EIR are generalised and referred to as the HLR Subsystem(HSS).</p><p> 

43、 Now the last remnants of traditional telecommunications switching are removed, leaving a network operating completely on the IP protocol, and generalised for the transport of many service types. Real-time services are s

44、upported through the introduction of a new network domain, the IP Multimedia Subsystem (IMS).</p><p>  Currently the 3GPP are working on Release 6, which purports to cover all aspects not addressed in frozen

45、 releases. Some call UMTS Release 6 4G and it includes such issues as interworking of hot spot radio access technologies such as wireless LAN.</p><p>  1.2 UMTS FDD and TDD</p><p>  Like any CDM

46、A system, UMTS needs a wide frequency band in which to operate to effectively spread signals. The defining characteristic of the system is the chip rate, where a chip is the width of one symbol of the CDMA code. UMTS use

47、s a chip rate of 3.84Mchips/s and this converts to a required spectrum carrier of 5MHz wide. Since this is wider than the 1.25MHz needed for the existing cdmaOne system, the UMTS air interface is termed ‘wideband’ CDMA.&

48、lt;/p><p>  There are actually two radio technologies under the UMTS umbrella: UMTS FDD and TDD. FDD stands for Frequency Division Duplex, and like GSM, separates traffic in the uplink and downlink by placing t

49、hem at different frequency channels. Therefore an operator must have a pair of frequencies allocated to allow them to run a network, hence the term ‘paired spectrum’. TDD or Time Division Duplex requires only one frequen

50、cy channel, and uplink and downlink traffic are separated by sending them at diffe</p><p>  The Time Division Duplex (TDD) system, which needs only one 5MHz band in which to operate, often referred to as unp

51、aired spectrum. The differences between UMTS FDD and TDD are only evident at the lower layers, particularly on the radio interface. At higher layers, the bulk of the operation of the two systems is the same. As the name

52、suggests, the TDD system separates uplink and downlink traffic by placing them in different time slots. As will be seen later, UMTS uses a 10ms frame structure which</p><p>  The TDD system should not really

53、 be considered as an independent network, but rather as a supplement for an FDD system to provide hotspot coverage at higher data rates. It is rather unsuitable for large scale deployment due to interference between site

54、s, since a BTS may be trying to detect a weak signal from a UE, which is blocked out by a relatively strong signal at the same frequency from a nearby BTS. TDD is ideal for indoor coverage over small areas.</p>&l

55、t;p>  Since FDD is the main access technology being developed currently, the explanations presented here will focus purely on this system.</p><p>  1.3 UMTS Bearer Model</p><p>  The procedur

56、es of a mobile device connecting to a UMTS network can be split into two areas: the access stratum (AS) and the non-access stratum (NAS). The access stratum involves all the layers and subsystems that offer general servi

57、ces to the non-access stratum. In UMTS, the access stratum consists of all of the elements in the radio access network, including the underlying ATM transport network, and the various mechanisms such as those to provide

58、reliable information exchange. All of the non-ac</p><p>  UMTS radio access network (UTRAN) provides this separation of NAS and AS functions, and allows for AS functions to be fully controlled and implemente

59、d within the UTRAN. The two major UTRAN interfaces are the Uu, which is the interface between the mobile device, or User Equipment (UE) and the UTRAN, and the Iu, which is the interface between the UTRAN and the core net

60、work. Both of these interfaces can be divided into control and user planes each with appropriate protocol functions.</p><p>  A Bearer Service is a link between two points, which is defined by a certain set

61、of characteristics. In the case of UMTS, the bearer service is delivered using radio access bearers.</p><p>  A Radio access bearer (RAB) is defined as the service that the access stratum (i.e.UTRAN) provide

62、s to the non-access stratum for transfer of user data between the User Equipment and Core Network. A RAB can consist of a number of subflows, which are data streams to the core network within the RAB that have different

63、QoS characteristics,such as different reliabilities. A common example of this is different classes of bits with different bit error rates can be realised as different RAB subflows. RA</p><p>  A Radio Link i

64、s defined as a logical association between a single User Equipment (UE) and a single UTRAN access point, such as an RNC. It is physically comprised of one or more radio bearers and should not be confused with radio acces

65、s bearer.</p><p>  Looking within the UTRAN, the general architecture model is as shown in Figure 8 below. Now shown are the Node B or Base Station (BTS) and Radio Network Controller (RNC) components, and th

66、eir respective internal interfaces. The UTRAN is subdivided into blocks referred to as Radio Network Subsystems (RNS), where each RNS consists of one controlling RNC (CRNC) and all the BTSs under its control. Unique to U

67、MTS is the interface between RNSs, the Iur interface, which plays a key role in handover pro</p><p>  All the ‘I’ interfaces: Iu, Iur and Iub, currently3 use ATM as a transport layer. In the context of ATM,

68、the BTS is seen as a host accessing an ATM network, within which the RNC is an ATM switch. Therefore, the Iub is a UNI interface, whereas the Iu and Iur interfaces are considered to be NNI, as illustrated in Figure 9.<

69、;/p><p>  This distinction is because the BTS to RNC link is a point-to-point connection in that a BTS or RNC will only communicate with the RNC or BTS directly connected to it, and will not require communicati

70、on beyond that element to another network element.</p><p>  For each user connection to the core network, there is only one RNC, which maintains the link between the UE and core network domain, as highlighte

71、d in Figure 10. This RNC is referred to as the serving RNC or SRNC. That SRNC plus the BTSs under its control is then referred to as the SRNS. This is a logical definition with reference to that UE only. In an RNS, the R

72、NC that controls a BTS is known as the controlling RNC or CRNC. This is with reference to the BTS, cells under its control and all th</p><p>  As the UE moves, it may perform a soft or hard handover to anoth

73、er cell. In the case of a soft handover, the SRNC will activate the new connection to the new BTS. Should the new BTS be under the control of another RNC, the SRNC will also alert this new RNC to activate a connection al

74、ong the Iur interface. The UE now has two links, one directly to the SRNC, and the second, through the new RNC along the Iur interface. In this case, this new RNC is logically referred to as a drift RNC or DRNC, see <

75、/p><p>  A situation may arise where a UE is connected to a BTS for which the SRNC is not the CRNC for that BTS. In that situation, the network may invoke the Serving RNC Relocation procedure to move the core n

76、etwork connection. This process is described inSection 3.</p><p>  薅肈膄蚄螇袁蒃蚃衿膆荿蚃羂罿芅螞蟻膅膁羋螃羈肇莇袆膃蒞莇薅羆芁莆蚈膁芇蒞袀肄膃莄羂袇蒂莃螞肂莈莂螄裊芄莁袇肁膀蒁薆襖肆蒀蠆聿蒞葿螁袂莀蒈羃膇芆蕆蚃羀膂蒆螅膆肈蒅袈羈莇蒅薇膄芃薄蠆羇腿薃螂膂肅薂襖羅蒄薁蚄螈莀薀螆肅芆蕿袈袆膂蕿薈肂肈薈蝕襖莆蚇螃肀節(jié)蚆裊袃膈蚅薅肈膄蚄螇袁蒃蚃衿膆荿蚃

77、羂罿芅螞蟻膅膁羋螃羈肇莇袆膃蒞莇薅羆芁莆蚈膁芇蒞袀肄膃莄羂袇蒂莃螞肂莈莂螄裊芄莁袇肁膀蒁薆襖肆蒀蠆聿蒞葿螁袂莀蒈羃膇芆蕆蚃羀膂蒆螅膆肈蒅袈羈莇蒅薇膄芃薄蠆羇腿薃螂膂肅薂襖羅蒄薁蚄螈莀薀螆肅芆蕿袈袆膂蕿薈肂肈薈蝕襖莆蚇螃肀節(jié)蚆裊袃膈蚅薅肈膄蚄螇袁蒃蚃衿膆荿蚃羂罿芅螞蟻膅膁羋螃羈肇莇袆膃蒞莇薅羆芁莆蚈膁芇蒞袀肄膃莄羂袇蒂莃螞肂莈莂螄裊芄莁袇肁膀蒁薆襖肆蒀蠆聿蒞葿螁袂莀蒈羃膇芆蕆蚃羀膂蒆螅膆肈蒅袈羈莇蒅薇膄芃薄蠆羇腿薃螂膂肅薂襖羅蒄薁蚄螈莀薀

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論