版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
1、<p> 1800單詞,1萬英文字符,中文2840字</p><p> 出處:Liu J R, Itoh M, Machida K. Magnetic and electromagnetic wave absorption properties of α-Fe∕ Z-type Ba-ferrite nanocomposites[J]. Applied Physics Letters, 2006, 8
2、8(6): 062503.</p><p><b> 原文</b></p><p> Magnetic and electromagnetic wave absorption properties of -Fe/Z-type Ba-ferrite nanocomposites</p><p> Jiu Rong Liu, Masahiro
3、 Itoh, and Ken-ichi Machidaa</p><p> Center for Advanced Science and Innovation, Osaka University, 2-1 Yamadaoka</p><p> Suita, Osaka565-0871, Japan</p><p> (Received 16 August 2
4、005; accepted 6 December 2005; published online 7 February 2006)</p><p> The saturation magnetization values (Ms) of -Fe / Ba3Co1.8Fe23.6Cr0.6O41 nanocomposites prepared by mechanically alloying-Fe with Ba3
5、Co1.8Fe23.6Cr0.6O41 powders increased with increasing the concentration of-Fe.-Fe / Ba3Co1.8Fe23.6Cr0.6O41 nanocomposites showed higher coercivity values than а-Fe and Ba3Co1.8Fe23.6Cr0.6O41 because of the effects of sh
6、ape anisotropy and exchange bias. The resin compacts with 33.5 vol% -Fe/Ba3Co1.8Fe23.6Cr0.6O41 (38, 70, 85 vol% а-Fe) powders provided good electro</p><p> Ferrites, as conventional electromagnetic (EM) wav
7、e absorbing materials, have been widely studied from megahertz to igahertz (GHz) range because of their strong magnetism and high electric resistivity[1–3]. For EM wave applications there is an increasing interest in usi
8、ng ferrite-polymer ?lms rather than bulk ferrites. But, the thickness of ferrite-polymer ?lms has to be thick for ef?cient EM wave absorption, since it is dif?cult to increase the permeability values in GHz range owing t
9、o Snoek’s </p><p> Ba3Co1.8Fe23.6Cr0.6O41 was prepared by a conventional solid-state reaction method from the starting materials of BaCO3, Co3O4,Cr2O3, and Fe2O3 powders (purity 99 %)[12].-Fe/ Ba3Co1.8Fe23.
10、6Cr0.6O41(38, 70, 85 vol%-Fe) nanocomposites were obtained by ball-milling Ba3Co1.8Fe23.6Cr0.6O41 (<100 μm) with -Fe powders (325 mesh) in hexane, respectively. After drying at 623 K for 2 h in Ar, the resultant powde
11、rs were characterized by x-ray diffraction (XRD), and the microstructures were analyzed by a hig</p><p><b> ?。?)</b></p><p><b> (2)</b></p><p> where f is
12、 the frequency of the electromagnetic wave, d is the thickness of an absorber, c is the velocity of light, Z0 is the impedance of free space, and Zin is the input impedance of absorber. The RL value of ?20 dB is comparab
13、le to the 99% of EM wave absorption according to Eqs. (1) and (2), and thus “RL<?20 dB” is considered as an adequate EM absorption.</p><p> FIG.1. XRD patterns of(a)-Fe,(b) Ba3Co1.8Fe23.6Cr0.6O41,and(c),
14、(d),(e)-Fe/ Ba3Co1.8Fe23.6Cr0.6O41 nanocomposite powders with 38, 70, or 85 vol % -Fe, respectively.</p><p> Figure 1 shows the typical XRD patterns measured on the-Fe, Ba3Co1.8Fe23.6Cr0.6O41, and -Fe/Ba3Co
15、1.8Fe23.6Cr0.6O41 powders. From Fig.1(b), it was found that Ba3Co1.8Fe23.6Cr0.6O41 compound was formed by the solid-state reaction. All the peaks could be indexed as the hexagonal lattice of Ba3Co1.8Fe23.6Cr0.6O41 (JCPDS
16、 19-97). After ball milling the mixture of -Fe with Ba3Co1.8Fe23.6Cr0.6O41 powders at 200 r/min for 30 h in hexane and subsequent drying, only the peaks of -Fe were observed. The peak</p><p> FIG. 2. Freque
17、ncy dependences of relative permittivity εr(a), real part (b), and imaginary part (c) of relative permeability for the resin composites with 33.5 vol% of -Fe, Ba3Co1.8Fe23.6Cr0.6O41, and -Fe/Ba3Co1.8Fe23.6Cr0.6O41(38, 7
18、0, or 85 vol% -Fe)nanocomposite powders, respectively.</p><p> Figure 2(a) shows that the real part () and the imaginary part () of relative permittivity for the resin composites with 33.5 vol% -Fe/Ba3Co1.8
19、Fe23.6Cr0.6O41 powders containing 38, 70, or 85 vol% -Fe were almost constant between 2 and 18 GHz, for which the relative permittivity () showed less variation (=10,10,11 and =0.4, 0.4, 0.5, respectively). For the resin
20、 composites with 33.5 vol% Ba3Co1.8Fe23.6Cr0.6O41 powders, the and values were low constant and almost independent of frequency in the </p><p> FIG. 3. Frequency dependences of RL for the resin composites
21、 with 33.5 vol% of(a) Ba3Co1.8Fe23.6Cr0.6O41, and(b)-Fe/Ba3Co1.8Fe23.6Cr0.6O41(70 vol % -Fe)powders</p><p> Figure 3(a) shows the typical relationship between RL and frequency for the resin composites with
22、33.5 vol% Ba3Co1.8Fe23.6Cr0.6O41 powders. The RL values less than ?20 dB were obtained in the 4.6-12.4 GHz with absorber thickness of 2.8-5.4 mm. For the resin composites with 33.5 vol% -Fe/Ba3Co1.8Fe23.6Cr0.6O41(70 vol%
23、 -Fe)powders, the RL values less than ?20 dB were recorded in the 5.4-10.5 GHz with absorber thickness of 1.6-3.0 mm. In particular, a minimum RL of ?51 dB was obtained at 7.0 GHz wi</p><p> In conclusion,
24、-Fe/Ba3Co1.8Fe23.6Cr0.6O41(38, 70, or 85 vol%-Fe) nanocomposites have been prepared by ball-milling-Fe with Ba3Co1.8Fe23.6Cr0.6O41 powders, respectively, of which Ba3Co1.8Fe23.6Cr0.6O41 plays the double roles as magnet a
25、nd insulator for suppressing the eddy current loss. -Fe/Ba3Co1.8Fe23.6Cr0.6O41 nanocomposites showed higher Hc values than -Fe and Ba3Co1.8Fe23.6Cr0.6O41. Comparing with ferrites, -Fe / Ba3Co1.8Fe23.6Cr0.6O41 nanocomposi
26、tes with 70 or 85 vol% -Fe are promising for </p><p> This work was supported by Grant-in-Aid for Scienti?c Research No. 15205025 from the Ministry of Education, Science, Sports, and Culture of Japan, and I
27、ndustrial Technology Research Grant Program in 2003 from New Energy and Industrial Technology Development Organization (NEDO) of Japan.</p><p> [1].Y. Naito and K. Suetaki, IEEE Trans. Microwave Theory Tech
28、. 19 , 65(1971).</p><p> [2].S. A. Oliver, M. L. Chen, C. Vittoria, and P. Lubitz, J. Appl. Phys. 85 , 4630 (1999).</p><p> [3].M. Pardavi-Horvath, J. Magn. Magn. Mater. 215-216, 171 (2000).&l
29、t;/p><p> [4].J. L. Snoek, Physica Amsterdam 14, 207 (1948).</p><p> [5].S. Yoshida, M. Sato, E. Sugawara, and Y. Shimada, J. Appl. Phys. 85,4636 (1999).</p><p> [6].D. Rousselle, A
30、. Berthault, O. Acher, J. P. Bouchaud, and P. G. Zerah, J.Appl. Phys. 74, 475 (1993).</p><p> [7].S. Sugimoto, T. Maeda, D. Book, T. Kagotani, K. Inomata, M. Homma, H.Ota, Y. Houjou, and R. Sato, J. Alloys
31、Compd. 330, 301(2002).</p><p> [8].M. Pardavi-Horvath and L. J. Swartzendruber, IEEE Trans. Magn. 35,3502 (1999).</p><p> [9].A. Butera, J. N. Zhou, and J. A. Barnard, J. Appl. Phys. 87, 5627(
32、2000).</p><p> [10].H. M. Kim, C. Y. Lee, J. Joo, S. J. Cho, H. S. Yoon, D. A. Pejakovic, J. W.Yoo, and A. J. Epstein, Appl. Phys. Lett. 26, 589(2004).</p><p> [11].T. Tachibana, T. Nakagawa,
33、Y. Takada, T. Shimada, and T. Yamamoto, J.Magn. Magn. Mater. 284, 369(2004).</p><p> [12].H. Zhang, J. Zhou, Y. Wang, L. Li, Z. Yue, X. Wang, and Z. Gui, Mater.Lett. 56,397(2002).</p><p> [13]
34、.H. M. Musal, Jr. and H. T. Hahn, IEEE Trans. Magn. 25,3851(1989).</p><p> [14].N. T. Rochman, K. Kawamoto, H. Sueyoshi, Y. Nakamura, and T. Nishida,J. Mater. Process. Technol. 89,367(1999).</p><
35、p> [15].J. Sort, J. Nogues, X. Amils, S. Surinach, J. S. Munoz, and M. D. Baro,Appl. Phys. Lett. 75, 3177(1999).</p><p> [16].A. Ceylan, C. C. Baker, S. K. Hasanain, and S. I. Shah, Phys. Rev. B 72,1344
36、11 (2005).</p><p> [17].H. J. Kwon, J. Y. Shin, and J. H. Oh, J. Appl. Phys. 75, 6109(1994).</p><p> [18].P. Singh, V. K. Babbar, A. Razdan, R. K. Puri, and T. C. Goel, J. Appl.Phys. 87,4362(2
37、000).</p><p> CZ7H$dq8KqqfHVZFedswSyXTy#&QA9wkxFyeQ^!djs#XuyUP2kNXpRWXmA&UE9aQ@Gn8xp$R#͑Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&
38、amp;MuWFA5uxY7JnD6YWRrWwc^vR9CpbK!zn%Mz849Gx^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT#&ksv*3tnGK8!z89AmYWpazadNu##KN&MuWFA5ux^Gjqv^$UE9wEwZ#Qc@UE%&qYp@Eh5pDx2zVkum&gTXRm6X4NGpP$vSTT
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 納米復(fù)合材料外文翻譯
- 納米復(fù)合材料外文翻譯--納米復(fù)合材料在千兆赫范圍內(nèi)的電磁微波吸收性能
- 納米復(fù)合材料
- 納米陶瓷復(fù)合材料
- 鋇鐵氧體基復(fù)合材料的制備及其電磁性能研究.pdf
- 納米晶鋇鐵氧體-軟磁雙相復(fù)合材料制備和磁性能研究.pdf
- pet/clay納米復(fù)合材料
- pet/clay納米復(fù)合材料
- 納米磁性復(fù)合材料和納米有序復(fù)合材料的制備及性能研究.pdf
- β-SiC@C-鋇鐵氧體納米復(fù)合材料的制備及其吸波性能研究.pdf
- 鎳鋅鐵氧體納米復(fù)合材料的制備、磁性能與微波吸收特性.pdf
- 聚氨酯-納米復(fù)合材料研究.pdf
- 納米復(fù)合材料的制備開題報(bào)告
- 粘土-橡膠納米復(fù)合材料的界面設(shè)計(jì)及高性能納米復(fù)合材料的制備.pdf
- 氧化鋅—鋇鐵氧體復(fù)合材料制備及其微波吸收性能的研究.pdf
- 鈦酸鍶鋇、釔鐵氧體及其復(fù)合材料的研究.pdf
- 先進(jìn)彈性體納米復(fù)合材料
- 碳納米復(fù)合材料在電磁屏蔽中的應(yīng)用.pdf
- SiC納米復(fù)合材料微波損耗模型及性能預(yù)測.pdf
- 聚乙烯-硫酸鋇納米復(fù)合材料的制備和表征.pdf
評論
0/150
提交評論