2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩11頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

1、<p>  使用IP攝像機(jī)的早期火災(zāi)探測</p><p>  出版雜志:Sensors ISSN 1424-8220 2012,12,5670-5686, 1到7頁</p><p>  摘要:煙霧的存在是火災(zāi)的首發(fā)癥狀,因此要做到火災(zāi)探測,準(zhǔn)確和快速地估計煙的存在是非常重要的。在本文中,我們提出了一種由因特網(wǎng)協(xié)議(IP)攝像機(jī)捕獲利用視頻序列的算法來檢測是否存在煙霧,其中一種重要

2、的功能,如探測煙霧顏色,運(yùn)動和生長特性。對于一個有效的IP攝像頭平臺在檢測煙霧時,必須直接操作檢測離散余弦變換(DCT)域,以減少計算成本,避免了一個完整的解碼在空間域算法所需的過程。該算法間變換的DCT技術(shù)被用來增加的檢測精度,而不違背DCT操作。在提出的方案中,首先對實(shí)驗(yàn)煙區(qū)域估計使用運(yùn)動和彩色煙霧性質(zhì);接下來使用形態(tài)學(xué)操作降低噪聲,最后確定實(shí)驗(yàn)煙區(qū)的生長特性。此外,通過使用連接的組件標(biāo)記技術(shù)分析。評價結(jié)果表明,一個可行的感煙探測方

3、法假陰性和假陽性錯誤率近似相等,分別達(dá)到4%和2%。</p><p>  關(guān)鍵詞 早期火災(zāi)探測/煙霧探測/DCT/DCT變換間/視頻監(jiān)控/IP攝像機(jī) </p><p><b>  1 介紹 </b></p><p>  早期火災(zāi)探測,可以幫助提醒和防止災(zāi)害產(chǎn)生巨大的經(jīng)濟(jì)損失和人身的傷害。 燃燒的對象通常始于排放的煙,甚至在著火,因此早期火災(zāi)探

4、測,探測煙霧的存在是一個重要因素。該功能的描述取決于燃燒對象產(chǎn)生煙的化學(xué)性質(zhì)、火溫度、氧的含量等等。一般來說,當(dāng)著火點(diǎn)溫度升高時煙的顏色范圍從白到白偏藍(lán),當(dāng)燃燒溫度降低,從灰到黑。最常見的煙霧探測器是基于紅外或紫外線相機(jī),而其他檢測技術(shù)是基于粒子、溫度、相對濕度和空氣透明度的分析。這些系統(tǒng)直到煙粒子或火焰非常接近火災(zāi)探測器設(shè)備才被激活,而且這些設(shè)備不能提供更多關(guān)于火的確切位置、大小、生長速率等[1]的信息。為了提供更準(zhǔn)確和可靠的感煙探測

5、,一些視頻處理基礎(chǔ)檢測系統(tǒng)被提出。</p><p>  一般來說,基于視頻處理的火災(zāi)探測算法都使用火災(zāi)的兩個主要特點(diǎn):火焰和煙霧。幾乎所有文獻(xiàn)的火災(zāi)探測算法在進(jìn)行像素級分析時使用火焰或煙霧的一些屬性,如顏色、火焰或煙的自然閃爍、背景幀中的邊緣損失等等。在[2]中,作者提出了采用反向傳播算法的多層神經(jīng)網(wǎng)絡(luò)(MNN)恒指呈現(xiàn)火焰的顏色屬性(色調(diào),飽和度,強(qiáng)度)色彩空間火災(zāi)探測方法。該算法分析每個像素的顏色來確定一些像

6、素是否呈現(xiàn)火焰特性。在[3]和[4],隱馬爾可夫模型(HMM)和離散小波變換(DWT)是用于檢測閃爍的像素提示火焰的存在。一般火焰的存在比只有煙的存在可能表明更嚴(yán)重的火災(zāi)形勢在。因此對早期火災(zāi)探測,感煙探測方案可能更有效。</p><p>  在文獻(xiàn)[5]和[6]中,作者使用一個基于高頻率的損失HMM及離散小波變換(DWT)的檢測煙霧方法。對[1]中的RGB圖像序列進(jìn)行分析,以檢測煙的色度,品位是否有序。文獻(xiàn)[7

7、]建議結(jié)合動態(tài)和靜態(tài)煙的幾個功能,如生長、紊亂、輕彈頻率和小波變換的能量,然后將這些信息結(jié)合,用來制作一個MNN檢測煙霧的存在。文獻(xiàn)[8]中的煙檢測算法是以累積方式通過煙的的視頻序列分析煙霧運(yùn)動方向。文獻(xiàn)[9]中的算法目的是檢測煙和火焰內(nèi)的隧道,火災(zāi)探測是基于使用的背景圖像提取出的運(yùn)動區(qū)域,并分析運(yùn)動歷史圖像以及不變矩。這個應(yīng)用程序的主要問題是汽車和重型氣流所產(chǎn)生的大量運(yùn)動。在煙霧檢測[10]所提出的算法中,煙霧被認(rèn)為是一種可以提取使用

8、的紋理圖案,通常被用作紋理分類器的局部二元模式(LBP)。然后使用這些LBP培養(yǎng)一個的MNN確定煙霧的存在。在[11]中,使用煙色屬性是基于[1]中的定義和煙霧運(yùn)動檢測光流算法制作一個MNN檢測煙霧存在。值得注意的是,上述所有火災(zāi)探測算法在工作空間域內(nèi)對每個視頻幀的像素值進(jìn)行分析。 </p><p>  最近IP攝像機(jī)在視頻監(jiān)控中的使用顯著增長,因?yàn)榛贗P技術(shù)的視頻監(jiān)視系統(tǒng),很容易以較低的成本實(shí)現(xiàn),而且許多公司

9、已經(jīng)使用無線互聯(lián)網(wǎng)基礎(chǔ)設(shè)施布線 [12]。此外IP攝像頭不僅可以捕捉到的圖像序列,也有其自己的處理器、內(nèi)存和操作系統(tǒng),它不需要額外的計算機(jī)設(shè)備就可以加載程序來處理捕獲的信息。IP攝像機(jī)也可以連接形成網(wǎng)絡(luò),一個視頻監(jiān)控系統(tǒng)更加可靠。一般來說,IP攝像機(jī)所提供的數(shù)據(jù)信息可以以多種格式進(jìn)行編碼,例如 Motion-JPEG(MJPEG)、H.264等[12]。 </p><p>  使用IP技術(shù)的火災(zāi)探測有很多種優(yōu)勢,

10、例如網(wǎng)絡(luò)攝像機(jī)網(wǎng)絡(luò)與具有單一的視頻監(jiān)控系統(tǒng)相比可以更準(zhǔn)確地探測火源地點(diǎn)、幅度和傳播方向。然而為了有效地使用IP技術(shù)的火災(zāi)探測,本的煙檢測算法必須直接在離散余弦變換(DCT)域執(zhí)行,因?yàn)榻獯a(從DCT域空間域)和可能的編碼(從空間 DCT域的域)是相當(dāng)高的耗時過程。 然而幾乎所有的火檢測算法,包括在文獻(xiàn)[1-11]中所提出的建議都在是空間域中進(jìn)行分析每個像素或塊的值。 因此任何在IP 技術(shù)執(zhí)行這些算法都要求相當(dāng)高的額外處理時間。 <

11、/p><p>  本文提出了一種煙霧探測的算法。這是一個擴(kuò)展版本中提出 UCAmI'11 [13]。 該算法直接在DCT域運(yùn)行,并可以在IP攝像監(jiān)視系統(tǒng)實(shí)現(xiàn)。該算法使用煙霧的幾個特性檢測煙霧的存在,如顏色、運(yùn)動和傳播特性。這是直接從DCT系數(shù)提取可以避免解碼過程。要提高分辨率的視頻幀并且不顯著增加計算量,可以使用間快速變換的DCT系數(shù) [14]和[15]。</p><p>  2 基于

12、視頻處理煙霧探測計劃</p><p>  煙霧探測計劃的設(shè)計有效的基于IP攝像機(jī)系統(tǒng),其中MJPEG編解碼器編碼的序列作為輸入數(shù)據(jù)的煙檢測算法。最近使用H.264編解碼器的IP攝像機(jī)已經(jīng)開發(fā),但這些IP攝像機(jī)成本是遠(yuǎn)遠(yuǎn)高于MJPEG編解碼器的IP攝像機(jī),我們認(rèn)為所提供的H.264的高壓縮率的煙檢測任務(wù)是沒有必要的,因?yàn)樗皇潜匾拇鎯騻鬏數(shù)腎P相機(jī)模塊和所捕獲的視頻序列之間的主計算機(jī)系統(tǒng)。此外MJPEG編解碼器

13、可以提供比H.264編解碼器更高質(zhì)量的幀。因此考慮煙霧檢測方案的計算和經(jīng)濟(jì)的成本,我們認(rèn)為基于MJPEG的IP攝像模塊是最充足高效的平臺以及高質(zhì)量幀的產(chǎn)品。雖然擬議的計劃是專為MJPEG編解碼系統(tǒng),但它稍作修改后也可以適應(yīng)H.264。</p><p>  圖1 ??煙霧探測計劃的建議框圖</p><p>  煙霧檢測方案的建議框圖,如圖1。該框圖由四個階段組成:視頻幀采集階段、基于DCT

14、變換間預(yù)處理階段、煙霧區(qū)域檢測階段和區(qū)域的分析階段。在視頻幀的采集階段,每個IP攝像機(jī)捕獲的幀大小為1920×1080像素并使用一個標(biāo)準(zhǔn)的JPEG編解碼器編碼,其中雙向維DCT被施加到非重疊塊 8×8像素的每個幀。在預(yù)處理階段中,DCT變換間被應(yīng)用到所有 DCT塊的8×8個系數(shù)的每一幀得到DCT塊的4×4系數(shù),而無需使用逆DCT(IDCT)。在煙霧區(qū)域檢測階段中,使用每個DCT塊的DC值的4

15、15;4系數(shù)的幾個連續(xù)幀對煙霧的動作和顏色屬性分析來確定煙霧區(qū)域?qū)嶒?yàn)著火點(diǎn)。實(shí)驗(yàn)區(qū)域利用形態(tài)學(xué)消除孤立塊處理。通過使用連接元件標(biāo)記法排除非煙霧區(qū)域的候選區(qū)域的煙的膨脹性能分析。除了??視頻幀采集階段,以后的所有階段接下來分小節(jié)描述。 </p><p>  2.1 基于預(yù)處理DCT變換間</p><p>  正如前面提到的,一個每個IP相機(jī)模塊提供8個DCT塊×8系數(shù)的幀,但這個塊

16、的大小過大將影響防煙功能的準(zhǔn)確分析,這時使用一個較小的塊是必要的。 傳統(tǒng)上,如果不能避免DCT塊與從當(dāng)前的塊的大小尺寸不同,必須計算反離散余弦變換,然后與所需的塊的大小作為一個新的DCT 重新計算。這些過程是非常耗時的操作。</p><p>  2.2 煙霧區(qū)偵查階段 </p><p>  在濃煙區(qū)域檢測階段,一些實(shí)驗(yàn)煙塊使用運(yùn)動和顏色屬性的煙霧。此階段接收的 S的DCT塊Sb ×

17、;S b 每個幀在預(yù)處理階段以前的系數(shù),這是由三個通道組成的:亮度計算通道(Y)和兩個色度通道(C b 和 C r)。</p><p><b>  2.3 煙色分析 </b></p><p>  顏色是煙霧的另一個重要特征,因此該功能已被常用于幾個煙霧探測算法[8,11]。幾乎所有的算法使用了陳的煙色模型[1],煙色是使用RGB色彩空間為基礎(chǔ)的規(guī)則來確定。第一條規(guī)則是

18、基于事實(shí)即:煙霧的顏色是灰色的,表示三個顏色通道的強(qiáng)度約是相同的。第二條規(guī)則確定的灰度值必須介于80和220。這個范圍表明煙霧的顏色既不是白色的也不這么黑的。</p><p><b>  3 結(jié)論</b></p><p>  在本文中,我們提出了一種使用互聯(lián)網(wǎng)協(xié)議(IP)攝像機(jī)技術(shù)的Motion JPEG(MJPEG)編解碼器進(jìn)行早期火災(zāi)探測計劃。其中離散余弦變換(D

19、CT)把每個大小為8×8的塊的系數(shù)作為輸入數(shù)據(jù)。在提出的方案中,幾個煙特性,比如運(yùn)動、顏色和膨脹特性直接在DCT域進(jìn)行了分析,避免高耗時的逆離散馀弦轉(zhuǎn)換操作。如要提高精度可引入DCT變換間[14,15]作為預(yù)處理操作,這可以改變塊大小從8×8到4×4,并且沒有逆DCT。擬議計劃的50個視頻序列沒有硝煙的煙霧和其他50個視頻序列評估,取得假陽性錯誤率約2%,假陰性錯誤率約等于 4%。假陰性錯誤發(fā)生在兩個視頻序

20、列主原因是煙的顏色與背景之間的煙霧相似性很大,這個問題可能會使用位于其他位置的其他IP攝像機(jī)解決。該算法可以在網(wǎng)絡(luò)攝像機(jī)網(wǎng)絡(luò)實(shí)現(xiàn),其中每個IP攝像機(jī)可以傳輸其分析結(jié)果的C4操作中心獲得更可靠的信息,如有關(guān)火災(zāi)的起源、規(guī)模、增長速度和方向等 。 </p><p>  An Early Fire Detection Using IP Cameras</p><p>  Sensors ISSN

21、 1424-8220 2012,12,5670-5686</p><p>  Abstract: The presence of smoke is the first symptom of fire; therefore to achieve early fire detection, accurate and quick estimation of the presence of smoke is very i

22、mportant. In this paper we propose an algorithm to detect the presence of smoke using video sequences captured by Internet Protocol (IP) cameras, in which important features of smoke, such as color, motion and growth pro

23、perties are employed. For an efficient smoke detection in the IP camera platform, a detection algorithm must op</p><p>  Keywords: early fire detection; smoke detection; DCT; DCT inter-transformation; video

24、surveillance; IP camera </p><p>  1. Introduction </p><p>  Early fire detection can help to alert of and prevent disasters that generate great economic damages and human losses. The combustion

25、of objects usually begins with the emission of smoke, even before catching fire; therefore the presence of smoke is an essential factor for early fire detection. The features that describe the smoke depend on chemical pr

26、operties of the combusting object, the fire temperature, the amount of oxygen, and so on. Generally the smoke color range goes from white to white</p><p>  Generally the video processing-based fire detection

27、 algorithms are carried out using two principal characteristics of fire, which are flame and smoke. Almost all fire detection algorithms in the literature perform a pixel level analysis using some flame and/or smoke prop

28、erties, such as the flame/smoke color, flickering nature, loss of background edges in frames, among others. In [2], authors proposed a method for fire detection using a multilayer neural network (MNN) with a back-propaga

29、tion algo</p><p>  Recently the use of IP cameras in video surveillance has grown significantly, because video surveillance systems based on IP technology are easy to implement at low cost due to the use of

30、cabling and wireless Internet infrastructure already present in many companies [12]. Moreover, an IP camera not only captures sequences of images, but also has its own processor, memory and operating system, allowing loa

31、ded programs to process the captured information without the need of additional computer equ</p><p>  The use of IP technology for fire detection offers several advantages, for example IP-camera </p>

32、<p>  networks can detect fire origin, magnitude and propagation in more accurate manner compared with a single video surveillance system. However to efficiently use the IP technology for fire detection purposes, th

33、e smoke detection algorithm must perform directly in the Discrete Cosine Transform (DCT) domain, because decoding (from DCT domain to spatial domain) and possible encoding (from spatial domain to DCT domain) are consider

34、ably high time consuming processes. However almost all fire detection a</p><p>  This paper proposes a smoke detection algorithm, which is an extended version of that presented in UCAmI’11 [13]. The proposed

35、 algorithm operates directly in DCT domain and can be implemented in IP camera-based surveillance system. The proposed algorithm detects the presence of smoke using several smoke features, such as color, motion and sprea

36、ding characteristics, which are extracted directly from DCT coefficients to avoid the decoding process. To increase the resolution of video frames without</p><p>  2. Proposed Video Processing-Based Smoke De

37、tection Scheme </p><p>  The proposed smoke detection scheme is designed to work efficiently in an IP camera-based system, in which the sequence encoded by the MJPEG codec is available as input data for the

38、smoke detection algorithm. Recently, IP cameras with H.264 codec have been developed; however the cost of those IP cameras is much higher than that of IP cameras with MJPEG codec and we consider that the high compression

39、 rate offered by H.264 is not necessary for the smoke detection tasks, because it is not necessary</p><p>  Figure 1. Block diagram of the proposed smoke detection scheme.</p><p>  The block dia

40、gram of the proposed smoke detection scheme is shown in Figure 1, which is composed of four stages: video frames acquisition stage, DCT inter-transformation based preprocessing stage, smoke region detection stage and reg

41、ion analysis stage. In the video frames acquisition stage, each frame of size 1,920 × 1,080 pixels is captured by an IP camera and encoded using an standard JPEG codec, in which bi-dimensional DCT is applied to non-

42、overlapped blocks of 8 × 8 pixels of each frame. In </p><p>  2.1. DCT Inter-Transformation Based Preprocessing</p><p>  As mentioned before, an IP camera module provides DCT blocks of 8 &#

43、215; 8 coefficients of each frame; however this block size is too large for accurate analysis of smoke features and it is necessary to use a smaller block size. Traditionally if a DCT block with a size different from a c

44、urrent block size is required, the IDCT must be computed and then a new DCT with the required block size is re-calculated. These processes are highly time consuming operations.</p><p>  2.2. Smoke Region Det

45、ection Stage </p><p>  In the smoke region detection stage, some smoke block candidates are estimated using the motion and color properties of smoke. This stage receives DCT blocks of Sb × Sb coefficien

46、ts previously calculated by the preprocessing stage of each frame, which is composed of three channels: luminance channel (Y) and two chrominance channels (Cb and Cr). The motion property of smoke is analyzed using only

47、the luminance channel Y, and the smoke color property is analyzed using two chrominance channels Cb a</p><p>  2.3.Smoke Color Analysis</p><p>  The color is another important feature of smoke;

48、therefore this feature has been used commonly in several smoke detection algorithms [8,11]. Almost all algorithms used Chen’s smoke color model [1],in which the smoke color is determined using RGB color space-based rules

49、. The first rule is based other fact that the smoke color is gray, which means intensities of three color-channels are approximately the same. The second rule determines that the gray intensity must be between 80 and 220

50、. This rang</p><p>  3 Conclusions </p><p>  In this paper we have proposed an early fire detection scheme using Internet Protocol (IP) camera technology with Motion JPEG (MJPEG) codec, in whic

51、h the Discrete Cosine Transform (DCT) coefficients of each block of size 8 × 8 are available as input data. In the proposed scheme, several smoke features, such as motion, color and expansion properties are analyzed

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論