版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡(jiǎn)介
1、<p> Applied Catalysis B: Environmental 70 (2007) 542–547</p><p> www.elsevier.com/locate/apcatb</p><p> Reactivity of ole?ns in the hydrodesulfurization of</p><p> FCC gas
2、oline over CoMo sul?de catalyst</p><p> 加氫脫硫過(guò)程中烯烴的反應(yīng)活性</p><p> Makoto Toba *, YasuoMiki, Takashi Matsui, Masaru Harada, Yuji Yoshimura</p><p> National Institute of Advanced Indu
3、strial Science and Technology, Tsukuba Central-5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan</p><p> Available online 21 June 2006</p><p><b> Abstract</b></p><p>
4、 To achieve selective hydrodesulfurization (HDS) of ?uid catalytic-cracked (FCC) gasoline for producing sulfur-free gasoline (S < 10 ppm), the</p><p> reactivity of various ole?ns contained in FCC gasol
5、ine on CoMoP/Al2O3 sul?de catalysts was investigated. Isomerization of the C C double bond</p><p> from the terminal position to an internal position was observed. The steric hindrance around the C C double
6、 bond suppresses the reactivity of</p><p> ole?n hydrogenation. The sul?dation temperature of the catalyst has a major in?uence on ole?n hydrogenation active sites. Addition of the</p><p> app
7、ropriate amount of cobalt (Co/Mo ratio approximately 0.6) contributes to the suppression of ole?n hydrogenation at high reaction temperature</p><p> (260 8C). From the comparison of catalytic performance an
8、d characterization of our CoMoP/Al2O3 catalyst with an analogous commercial</p><p> catalyst, it is suggested that the hydrogenation of ole?ns depends not only on the state of the Mo CUS but also on the ste
9、ric effects of both ole?n</p><p> structure and MoS2 crystalline structure.</p><p> # 2006 Elsevier B.V. All rights reserved. </p><p> Keywords: FCC gasoline; Hydrogenation; Ole?
10、n; Cobalt molybdenum catalyst; Hydrodesulfurization</p><p> 1. Introduction</p><p> FCC gasoline, which is one of the major components of</p><p> motor gasoline, contains high le
11、vels of sulfur derived from</p><p> heavy gas oil and atmospheric residues used as FCC feedstock.</p><p> More than 90% of the sulfur content in gasoline blendstocks</p><p> deri
12、ves from FCC gasoline. Reduction of sulfur content in FCC</p><p> gasoline is the most effective strategy for sulfur-free</p><p> (S < 10 ppm) gasoline production. FCC gasoline also contain
13、s</p><p> valuable ole?ns which contribute to the octane number of the</p><p> motor gasoline. Octane-boosting ole?ns in the FCC gasoline</p><p> are often saturated during the h
14、ydrotreating reaction. There-</p><p> fore, selective HDS which minimizes octane loss is highly</p><p> desired in response to ever-tightening controls on sulfur</p><p> content
15、[1–3].</p><p> To clarify the structure of the active sites responsible for</p><p> ole?n conversion, the hydrogenation of typical ole?ns in</p><p> model feedstock containing su
16、lfur compounds has been</p><p> extensively studied. Stevens and Edmonds showed by using</p><p> edge-plane-rich and basal-plane-rich MoS2 that the hydro-</p><p> * Corresponding
17、 author. Tel.: +81 29 861 4740; fax: +81 29 861 4532.</p><p> E-mail address: m.toba@aist.go.jp (M. Toba).</p><p> 0926-3373/$ – see front matter # 2006 Elsevier B.V. All rights reserved.</
18、p><p> doi:10.1016/j.apcatb.2005.12.026</p><p> genation of butenes is a highly structure-sensitive reaction</p><p> [4]. Okamoto et al. reported that HDS selectivity depends on<
19、/p><p> the S/Mo ratio and surface structure of MoS2 catalyst [5].</p><p> Based on the inhibiting effect of H2S and various ole?ns,</p><p> Hatanaka et al. [1] proposed that on the
20、 sul?ded CoMo/Al2O3</p><p> catalyst there are three types of active sites for: (1) HDS, (2)</p><p> n-ole?n hydrogenation and (3) isoole?n hydrogenation.</p><p> However, the au
21、thors did not mention the structure of the</p><p> active sites. Choi et al. [6] examined the hydrogenation of</p><p> 2,3-dimethyl-2-butene and 1-hexene in the presence of 3-</p><p
22、> methylthiophene over sul?ded CoMo/Al2O3 with different tin</p><p> loadings. They proposed that interfacial sites between the</p><p> sul?de phase and the hydroxyl groups of the support
23、play an</p><p> important role in ole?n hydrogenation. However, the results</p><p> obtained by these kinds of experiments using a model</p><p> feedstock do not always adequatel
24、y represent the real</p><p> catalytic system. In fact FCC gasoline contains complex</p><p> mixture of ole?ns whose reactivity towards hydrogenation</p><p> might be in?uenced b
25、y the presence of other ole?ns,</p><p> hydrocarbons and sulfur compounds.</p><p> In this study, the reactivity of various ole?ns contained in</p><p> FCC gasoline in selective
26、HDS over CoMo/Al2O3 catalyst was</p><p> investigated to clarify the relationship among reaction</p><p> conditions, active sites of catalysts and selectivity of HDS.</p><p><b
27、> 簡(jiǎn)要</b></p><p> 為了實(shí)現(xiàn)流體催化裂化選擇性脫硫加氫,不產(chǎn)生硫雜質(zhì)氣(硫的濃度小于10ppm),在以CoMoP/Al2O3為催化劑的催化裂化反應(yīng)中,我們對(duì)不同種類的烯烴反應(yīng)活性做了研究,還觀察了碳碳雙鍵從末尾位置變化到中間位置的主要機(jī)理。碳碳雙鍵周圍的位阻抑制了烯烴加氫反應(yīng)過(guò)程中的活性。催化劑在硫化作用中的不同溫度對(duì)脫硫加氫的反應(yīng)活性產(chǎn)生了重要的影響。額外添加適量的鈷(比率
28、大約為0.6)有助于抑制烯烴加氫的反應(yīng)的溫度(260 ℃)。我們對(duì)CoMoP/Al2O3催化劑和類似的工業(yè)催化劑在性能上做了比較,發(fā)現(xiàn)烯烴的加氫不僅取決于Mo CUS的狀態(tài),還與烯烴的結(jié)構(gòu)和二硫化鉬晶體結(jié)構(gòu)有關(guān)。</p><p><b> 1簡(jiǎn)介</b></p><p> FCC汽油,是機(jī)動(dòng)車用油的主要組成之一,其含有高濃度的硫元素,而這些硫主要來(lái)源于重瓦斯油和大
29、氣殘留,之后又會(huì)被作為催化裂化原材料。在車用油中,超過(guò)90%的硫含量來(lái)源于FCC汽油。在FCC汽油中降低硫含量是實(shí)現(xiàn)汽油無(wú)硫化(硫濃度小于10ppm)的最有效的策略。FCC汽油還包含高價(jià)值的烯烴,這些烯烴可以產(chǎn)生車用汽油所需的辛烷,辛烷在加氫處理反應(yīng)中烯烴鍵經(jīng)常處于飽和狀態(tài)?,F(xiàn)在對(duì)硫含量[1–3]的控制日趨嚴(yán)厲,因此我們非常期望能提高加氫脫硫的選擇性來(lái)最大限度地減少辛烷的損失量。</p><p> 為了清晰闡明
30、烯烴轉(zhuǎn)換過(guò)程中的結(jié)構(gòu),我們對(duì)典型的烯烴加氫反應(yīng)模型進(jìn)行了廣泛的研究。通過(guò)使用棱面與基面原理,史蒂文斯和埃德蒙茲表示二硫化鉬丁烯的加氫反應(yīng)是一個(gè)高度結(jié)構(gòu)敏感反應(yīng)[4].,Okamoto等人表示,脫硫加氫反應(yīng)(HDS)的選擇性取決于S / Mo的比率和二硫化鉬催化劑[5]的表面結(jié)構(gòu)?;诹蚧瘹浜透鞣N烯烴的抑制效果,Hatanaka等人提出CoMo/Al2O3在三種類型的硫化反應(yīng)過(guò)程中起催化作用:(1)脫硫加氫反應(yīng)(2)雙烯烴加氫反應(yīng)(3)單
31、烯烴加氫反應(yīng)。然而,這些人并沒(méi)有提到這種結(jié)構(gòu)的活躍點(diǎn)。崔 [6]等人檢驗(yàn)了的加氫反應(yīng)過(guò)程中,不同程度錫的量對(duì)2,3二甲基,2丁烯和1,己烯的3甲基噻吩硫化物的影響。他們認(rèn)為在烯烴加氫反應(yīng)的過(guò)程中,各個(gè)羥基的連接點(diǎn)的支持發(fā)揮著重要的作用。然而,通過(guò)這些實(shí)驗(yàn)?zāi)P偷玫降慕Y(jié)果并不總是充分代表了真實(shí)催化體系。事實(shí)上FCC汽油包含復(fù)雜的烯烴混合物,這些烯烴的活性可能會(huì)受到其他烯烴、碳?xì)浠衔锖土虻幕衔锏挠绊憽?lt;/p><p&g
32、t; 在這項(xiàng)研究中,專家們研究了FCC汽油中包含的各種烯烴的反應(yīng)活性以此來(lái)證明反應(yīng)過(guò)程中反應(yīng)條件、催化劑活躍點(diǎn)以及HDS反應(yīng)選擇性之間的關(guān)系。</p><p> M. Toba et al. / Applied Catalysis B: Environmental 70 (2007) 542–547</p><p><b> 543</b></p>
33、<p> 2. Experimental</p><p><b> Table 1</b></p><p> Properties of FCC gasoline</p><p> CoMoP/Al2O3 sul?de catalysts were prepared by incipient</p><p
34、> wetness impregnation of g-alumina (surface area: 195 m2/g)</p><p> with a mixed solution obtained from molybdenum oxide, cobalt</p><p> carbonate, a phosphate salt and a special ligand.
35、CoO and MoO3</p><p> contents were 2.3 and 12.0 wt.% (Co/Mo = 0.36 (mol/mol)), 3.1</p><p> and 12.0 wt.% (Co/Mo = 0.50 (mol/mol)), 3.9 and 12.0 wt.%</p><p> (Co/Mo = 0.62 (mol/mo
36、l)) and 5.4 and 12.0 wt.% (Co/</p><p> Mo = 0.85 (mol/mol)), respectively. A commercial CoMoP/</p><p> Al2O3 sul?de catalyst (3.1 wt.%CoO and 12.0 wt.%MoO3 (Co/</p><p> Mo = 0.50
37、 (mol/mol)) was used for comparison purpose. All</p><p> catalysts were sul?ded in situ under of 5%H2S/H2 ?ow (200 ml/</p><p> min) between 298 and 360 8C for 3 h before being used in the</
38、p><p><b> reaction.</b></p><p><b> 3</b></p><p> Sulfur (wt. ppm)(硫)</p><p> H/C (atom/atom)(原子)Average molecular weight(平均分子質(zhì)量)</p><
39、;p><b> GC-RONa</b></p><p><b> GC-MONb</b></p><p><b> T90 (8C)</b></p><p> Hydrocarbon (vol.%)</p><p> Paraf?ns (P)</p>
40、<p> Isoparaf?ns (I)</p><p> Ole?ns (O)</p><p> Naphthenes (N)</p><p> Aromatics (A)</p><p> Full range</p><p><b> 0.733</b></p
41、><p><b> 158.9</b></p><p><b> 1.93</b></p><p><b> 101.5</b></p><p><b> 90.5</b></p><p><b> 79.5<
42、/b></p><p><b> 165.9</b></p><p><b> 5.5</b></p><p><b> 37.6</b></p><p><b> 26.3</b></p><p><b>
43、 9.2</b></p><p><b> 21.4</b></p><p><b> Heavy A</b></p><p><b> 0.771</b></p><p><b> 234.1</b></p><
44、p><b> 1.83</b></p><p><b> 111.5</b></p><p><b> 88.9</b></p><p><b> 78.2</b></p><p><b> 176.6</b><
45、/p><p><b> 4.8</b></p><p><b> 32.4</b></p><p><b> 19.7</b></p><p><b> 12.4</b></p><p><b> 30.8</
46、b></p><p><b> Heavy B</b></p><p><b> 0.780</b></p><p><b> 61.8</b></p><p><b> 1.80</b></p><p><b&
47、gt; 114.6</b></p><p><b> 89.5</b></p><p><b> 78.6</b></p><p><b> 182.3</b></p><p><b> 4.4</b></p><
48、p><b> 25.8</b></p><p><b> 25.5</b></p><p><b> 12.6</b></p><p><b> 31.7</b></p><p> The selective HDS of FCC gaso
49、line was carried out in a</p><p> high-pressure ?xed-bed continuous-?ow reactor as described</p><p> previously [7]. The products were collected using a liquid–gas</p><p> separa
50、tor at À15 8C and atmospheric pressure. The reaction</p><p><b> a</b></p><p><b> b</b></p><p> GC-RON: research octane number calculated by the resul
51、t of GC analysis.</p><p> GC-MON: motor octane number calculated by the result of GC analysis.</p><p> was performed under 1–2 MPa of hydrogen pressure, at 220–</p><p> 260 8C, l
52、iquid hourly space velocity (LHSV) 4 hÀ1, and a</p><p> volumetric ratio hydrogen (NTP) to feed of 100.</p><p> The hydrocarbon compositions of feedstock and products</p><p>
53、 were analyzed using a PIONA-GC (Agilent 6890N (JIS K2536)</p><p> Yokogawa Analytical Systems Co. GPI system). The total</p><p> sulfur content was measured by elemental analysis (Mitsubishi
54、</p><p> Chemicals Co., TS-100V). Sulfur compounds were analyzed</p><p> using a GC-SCD (Agilent 6890-Sievers 355).</p><p> The HDS and conversion of ole?n (HDO) were calculated
55、as</p><p><b> follows:</b></p><p> HDS ð%Þ ¼ ½ðSfeed À SproductÞ=Sfeed?  100</p><p> C7 (7.2 vol.% (heavy A) and 9.1 vol.% (h
56、eavy B) in total</p><p> hydrocarbons) ole?ns are the main components in the two kinds</p><p> of heavy FCC gasoline. Table 2 shows in details the</p><p> composition of the C6 o
57、le?n contained in the three kinds of</p><p> FCC gasoline. Internal ole?ns prevailed on the terminal ones.</p><p> The compositions of C5 and C7 ole?n compositions are similar</p><p
58、> to that for C6 ole?ns. Four kinds of C6 ole?ns (2-hexene, 3-</p><p> hexene, 4-methyl-2-pentene and 3-methyl-2-pentene) have</p><p> trans and cis isomers. Due to steric effect it is exp
59、ected that the</p><p><b> Table 2</b></p><p> C6 ole?ns contained in three kinds of FCC gasoline</p><p> where Sfeed and Sproduct indicate the amount of sulfur in the
60、 feed</p><p><b> Ole?n</b></p><p> Composition (% in total acyclic C6 ole?ns)</p><p> and product, respectively.</p><p> Full range</p><p>
61、<b> Heavy A</b></p><p><b> Heavy B</b></p><p> HDO ð%Þ ¼ ½ðT feed À T productÞ=T feed?  100</p><p> where Tf eed
62、 and Tproduct indicate the ole?n concentration deter-</p><p> mined by GC analysis in the feed and products, respectively.</p><p> Three kinds of FCC gasoline were used: (a) full-range FCC<
63、/p><p> gasoline, (b) heavy A (60 8C + distillate of full-range FCC</p><p> gasoline (a)) and (c) heavy B (heavy FCC gasoline supplied from</p><p> another re?nery). Their propertie
64、s are summarized in Table 1.</p><p> High sulfur FCC gasoline was prepared by mixing thiophene</p><p> Terminal ole?ns(末端烯烴)</p><p><b> RCH CH2</b></p><p&g
65、t; 1-Hexene1(己烯)</p><p> 3-Methyl-1-pentene(3甲基1戊烯)</p><p> 4-Methyl-1-pentene43,3-Dimethyl-1-butene(3、3二甲基1丁烯)</p><p><b> R1R2C CH2</b></p><p> 2-Meth
66、yl-1-pentene(2甲基1戊烯)</p><p> 2-Ethyl-1-butene(2甲基1丁烯)</p><p> 2,3-Dimethyl-1-butene(2,3甲基1丁烯)</p><p><b> 9.9</b></p><p><b> 5.0</b></p>
67、;<p><b> 2.7</b></p><p><b> 1.8</b></p><p><b> 0.3</b></p><p><b> 11.3</b></p><p><b> 8.7</b><
68、;/p><p><b> 0</b></p><p><b> 2.7</b></p><p><b> 6.3</b></p><p><b> 4.3</b></p><p><b> 1.2</b>
69、</p><p><b> 0.8</b></p><p><b> 0</b></p><p><b> 8.1</b></p><p><b> 6.8</b></p><p><b> 0</b>
70、;</p><p><b> 1.3</b></p><p><b> 7.6</b></p><p><b> 5.2</b></p><p><b> 1.5</b></p><p><b> 0.9<
71、/b></p><p><b> 0</b></p><p><b> 8.5</b></p><p><b> 7.1</b></p><p><b> 0</b></p><p><b> 1.4<
72、;/b></p><p> (S = 480.2 wt. ppm), 2-methylthiophene (S = 480.2 wt. ppm)</p><p> and benzothiophene (S = 960.4 wt. ppm) with heavy FCC</p><p> gasoline (heavy B).</p>&l
73、t;p> 3. Results and discussion</p><p> 3.1. Composition of ole?ns contained in FCC gasoline</p><p> The distributions of ole?ns contained in the three kinds of</p><p> FCC ga
74、soline were determined by GC analysis. C5 (8.6 vol.%</p><p> in total hydrocarbon) and C6 (6.7 vol.% in total hydrocarbon)</p><p> ole?ns are the main components in the full-range FCC gasoline
75、.</p><p> Most C5 ole?ns are removed by distillation and C6 (5.9 vol.%</p><p> (heavy A) and 5.8 vol.% (heavy B) in total hydrocarbons) and</p><p> Internal ole?ns內(nèi)部烯烴</p>
76、<p><b> R1CH CHR2</b></p><p> trans-2-Hexene</p><p> cis-2-Hexene</p><p> trans-3-Hexene</p><p> cis-3-Hexene</p><p> trans-4-Methy
77、l-2-pentene</p><p> cis-4-Methyl-2-pentene</p><p> R1R2C CHR3</p><p> 2-Methyl-2-pentene2甲基2丁烯</p><p> trans-3-Methyl-2-pentene3甲基2丁烯</p><p> cis-3-Me
78、thyl-2-pentene</p><p> R1R2C CR3 R4</p><p> 2,3-Dimethyl-2-butene23甲基2丙烯</p><p><b> 40.0</b></p><p><b> 14.6</b></p><p><b&g
79、t; 8.4</b></p><p><b> 7.4</b></p><p><b> 2.6</b></p><p><b> 5.3</b></p><p><b> 1.7</b></p><p>&l
80、t;b> 38.8</b></p><p><b> 16.1</b></p><p><b> 13.9</b></p><p><b> 8.8</b></p><p><b> 0</b></p><p
81、><b> 0</b></p><p><b> 40.9</b></p><p><b> 16.3</b></p><p><b> 9.9</b></p><p><b> 8.0</b></p>
82、<p><b> 2.6</b></p><p><b> 3.3</b></p><p><b> 0.9</b></p><p><b> 44.7</b></p><p><b> 17.2</b></
83、p><p><b> 17.7</b></p><p><b> 9.8</b></p><p><b> 0</b></p><p><b> 0</b></p><p><b> 41.8</b>&l
84、t;/p><p><b> 16.6</b></p><p><b> 10.0</b></p><p><b> 8.0</b></p><p><b> 2.9</b></p><p><b> 3.3</
85、b></p><p><b> 1.0</b></p><p><b> 42.1</b></p><p><b> 17.5</b></p><p><b> 15.5</b></p><p><b>
86、9.1</b></p><p><b> 0</b></p><p><b> 0</b></p><p><b> 2實(shí)驗(yàn)</b></p><p> CoMoP/Al2O3催化劑是濕潤(rùn)浸漬的氧化鋁(面積:195平方米/克)以及氧化鉬、鈷碳酸、磷酸鹽和一個(gè)特
87、殊的配位體的混合物。CoO和MoO3的含量分別是2.3和12.0 wt. %(Co / Mo = 0.36(摩爾/摩爾)),3.1和12.0 wt. %(Co / Mo = 0.50(摩爾/摩爾)),3.9和12.0 wt. %(Co / Mo = 0.62(摩爾/摩爾))和5.4和12.0 wt. %( Co / Mo= 0.85(摩爾/摩爾)我們和工業(yè)上使用的CoMoP/Al2O3催化劑(3.1 wt. % CoO和12.0 wt.
88、 % MoO3(Co /Mo= 0.50(摩爾/摩爾))進(jìn)行了比較。在進(jìn)行這個(gè)硫化反應(yīng)之前,所有的催化劑在含有5%的H2S/H2 氣流中(200毫升/分) 在298℃和 360℃溫度中進(jìn)行三個(gè)小時(shí)。</p><p> 就像前文討論到的一樣,F(xiàn)CC汽油選擇性加氫脫硫的反應(yīng)是要在的高壓固定流動(dòng)反應(yīng)器中進(jìn)行。產(chǎn)物需在氣液分離器A15 8 c和大氣壓環(huán)境下才能收集到。這個(gè)反應(yīng)的條件是1 - 2 MPa的氫氣壓力,22
89、0℃ -260℃的溫度,LHSV為4 hÀ1以及氫氣的比達(dá)到100。我們使用了PIONA-GC(安捷倫6890 n(JIS K2536)日本橫河分析系統(tǒng)有限公司價(jià)格指數(shù)系統(tǒng))來(lái)分析了原料和產(chǎn)品的碳?xì)浠衔锝M成,用元素分析(三菱化工有限公司,ts - 100 v)測(cè)定了總的硫含量,用GC-SCD(安捷倫6890 –斯文355)分析了硫化合物的含量。</p><p> 烯烴的加氫脫硫的轉(zhuǎn)換率轉(zhuǎn)換(HDO)
90、計(jì)算如下:</p><p> HDS ð%Þ ¼ ½ðSfeed À SproductÞ=Sfeed?  100</p><p> HDO ð%Þ ¼ ½ðT feed À T productÞ=T feed?  100&l
91、t;/p><p> 三種類型的FCC汽油使用情況如下:(a)全程FCC汽油,(b)重型A(60. 8℃+全程餾出物FCC汽油(a))和(c)重型B(從另一個(gè)精煉廠獲得的重型FCC汽油)。表1中列出了一些他們的屬性。高硫含量的FCC汽油是由混合噻吩(S = 480.2 wt. ppm),2 -甲基噻吩(S = 480.2 wt. ppm)和苯并噻吩(S = 960.4 wt. ppm)以及重型 FCC汽油(重型B)混
92、合組成。</p><p><b> 3 結(jié)果與討論</b></p><p> 3.1 FCC汽油中烯烴的合成</p><p> GC分析在三種不同類型的FCC汽油烯烴的分散中三種起著決定性作用。C5(占碳?xì)浠衔锟偭康?.6 vol. %)和C6(占碳?xì)浠衔锟偭康?.7 vol. %)的烯烴化合物是全程FCC汽油中的主要構(gòu)成物質(zhì)。
93、大多數(shù)C5烯烴化合物都在蒸餾過(guò)程中除去, C6(5.9 vol. %(重型A)5.8vol. %(重型B)和C7(7.2 vol. %(重型A)和9.1 vol. %(重型B)是兩種組成重型FCC汽油的主要物質(zhì)。</p><p><b> 544</b></p><p> M. Toba et al. / Applied Catalysis B: Environm
94、ental 70 (2007) 542–547</p><p> Fig. 1. Effect of temperature on isomerization of carbon skeleton of C6 acyclic</p><p> hydrocarbons contained in the full-range FCC gasoline: (*) branched C6&l
95、t;/p><p> acyclic hydrocarbons; (~) linear C6 acyclic hydrocarbons; catalyst, CoMoP/</p><p> Al2O3 (3.1 wt.%CoO–12.0 wt.%MoO3 (Co/Mo = 0.50 (mol/mol))); reaction</p><p> pressure, 1
96、 MPa; feedstock, FCC gasoline (full-range).</p><p> reactivity of internal ole?n and trans isomers is lower than that</p><p> of terminal ole?n and cis isomers, respectively. Therefore, it is&
97、lt;/p><p> expected that the ole?n composition of FCC gasoline, which is</p><p> rich in internal ole?ns and trans isomers, improves the</p><p> selectivity of hydrodesulfurization
98、reaction (selective HDS).</p><p> 3.2. Reactivity of ole?ns in the hydrodesulfurization of</p><p> FCC gasoline</p><p> Fig. 1 shows the effect of temperature on the skeletal<
99、/p><p> isomerization of the C6 acyclic hydrocarbons contained in the</p><p> full-range FCC gasoline. The ratio between linear (the sum of</p><p> n-hexane, 1-hexene, 2-hexene (tra
100、ns, cis) and 3-hexene (trans,</p><p> cis)) and branched C6 acyclic hydrocarbons did not depend on</p><p> the reaction temperature and remained almost constant. This</p><p> res
101、ult indicates that skeletal isomerization did not occur under</p><p> Fig. 2. Effect of temperature on composition of C6 acyclic hydrocarbons</p><p> contained in the full-range FCC gasoline:
102、(*) paraf?ns and isoparaf?ns;</p><p> (^) RCH CH2 type ole?ns; (~) R1R2C CH2 type ole?ns; (*)</p><p> R1CH CHR2 type ole?ns; (~) R1R2C CHR3 type ole?ns; ( )</p><p> R1R2C CR3R4 t
103、ype ole?n; catalyst, CoMoP/Al2O3 (3.1 wt.%CoO–</p><p> 12.0 wt.%MoO3 (Co/Mo = 0.50 (mol/mol))); sul?dation temperature of cata-</p><p> lyst, 319 8C; reaction pressure, 1 MPa; feedstock, FCC g
104、asoline (full-range).</p><p> temperature, while conversion of terminal ole?ns remained</p><p> almost constant in the range of 220–260 8C.</p><p> Table 3 shows the effects of o
105、le?n structures on their</p><p> hydrogenation activity in the hydrodesulfurization of full-range</p><p> FCC gasoline over CoMoP/Al2O3 catalyst. The conversion</p><p> rates of
106、total C6 ole?n hydrogenation at 220, 240 and 260 8C</p><p> are 2.2%, 12.6% and 19.9%, respectively. The conversions of</p><p> terminal ole?ns (x-methyl-1-pentene) and cis ole?ns are much<
107、/p><p> higher than those of total C6 ole?n conversions. ‘Negative</p><p> conversion’ means formation of less reactive ole?ns, such as</p><p> internal and trans ole?ns, from more
108、reactive ole?ns such as</p><p> terminal and cis ole?ns through C C isomerization. The</p><p><b> Table 3</b></p><p> Effect of ole?n structures on their hydrogenatio
109、n activity in the hydrodesulfur-</p><p> ization of full-range FCC gasoline</p><p> this set of reaction conditions. Fig. 2 shows the effect of</p><p> temperature on the composi
110、tion of C6 acyclic hydrocarbons</p><p><b> Ole?n</b></p><p> Conversion of each temperature (%)</p><p> contained in full-range FCC gasoline. At 220 8C the percentage
111、</p><p> of the saturated acyclic hydrocarbons, such as paraf?ns and</p><p> x-Methyl-1-pentene</p><p><b> 220 8C</b></p><p><b> 240 8C</b>&
112、lt;/p><p><b> 260 8C</b></p><p> isoparaf?ns, is slightly increased (from 61.7 to 62.5% of the</p><p> total amount of C6 acyclic hydrocarbon) at 220 8C. This means</
113、p><p> that the hydrogenation of ole?ns occurred to a minor extent. At</p><p> 220 8C, the percentages of terminal ole?ns are decreased, while</p><p> the amounts of internal ole?ns
114、 are increased. These results</p><p> suggest that the C C double bond is isomerized from the</p><p> terminal position to an internal position. As in general, the</p><p> octane
115、 value of an internal ole?n is higher than that of its</p><p> corresponding terminal ole?n (e.g. 1-hexene: RON = 76.4,</p><p><b> x =2</b></p><p><b> x =3</
116、b></p><p><b> x =4</b></p><p> x = 5 (=1-Hexene)</p><p> y-Methyl-2-pentene</p><p><b> y =2</b></p><p> y = 3 (trans)</p
117、><p> y = 3 (cis)</p><p> y = 4 (trans)</p><p> y = 4 (cis)</p><p><b> 30.4</b></p><p><b> 58.6</b></p><p><b>
118、 50.8</b></p><p><b> 56.9</b></p><p><b> À11.9</b></p><p><b> À17.2</b></p><p><b> À7.8</b><
119、;/p><p><b> À1.9</b></p><p><b> 19.9</b></p><p><b> 32.9</b></p><p><b> 67.1</b></p><p><b> 60
120、.4</b></p><p><b> 58.8</b></p><p><b> À0.8</b></p><p><b> À7.5</b></p><p><b> À0.3</b></p>
121、;<p><b> 16.8</b></p><p><b> 37.4</b></p><p><b> 37.8</b></p><p><b> 67.8</b></p><p><b> 64.4</b>
122、;</p><p><b> 60.7</b></p><p><b> 9.0</b></p><p><b> À1.1</b></p><p><b> 5.5</b></p><p><b>
123、27.9</b></p><p><b> 45.6</b></p><p> trans-2-hexene: RON = 92.7, cis-2-hexene: RON = 92.7), the</p><p><b> z-Hexene</b></p><p> isomer
124、ization of the C C double bond from the terminal</p><p> position to an internal position may contribute to octane-</p><p> boosting and depression of ole?n hydrogenation. Hydrogena-</p>
125、<p> tion of internal ole?ns increased with increasing reaction</p><p> z = 2 (trans)</p><p> z = 2 (cis)</p><p> z = 3 (trans)</p><p> z = 3 (cis)</p>
溫馨提示
- 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。
最新文檔
- 2007年-外文翻譯--加氫脫硫過(guò)程中烯烴的反應(yīng)活性
- 2007年-外文翻譯--加氫脫硫過(guò)程中烯烴的反應(yīng)活性.docx
- 2007年-外文翻譯--加氫脫硫過(guò)程中烯烴的反應(yīng)活性(英文)
- 2007年-外文翻譯--加氫脫硫過(guò)程中烯烴的反應(yīng)活性(英文).pdf
- [雙語(yǔ)翻譯]-外文翻譯--加氫脫硫過(guò)程中烯烴的反應(yīng)活性
- 甘油加氫產(chǎn)物分離過(guò)程中的縮醛反應(yīng)的研究.pdf
- 活性炭脫硫過(guò)程中COS產(chǎn)生機(jī)理的研究.pdf
- 外文翻譯--雇傭過(guò)程中的薪金問(wèn)題
- 雇傭過(guò)程中的薪金問(wèn)題【外文翻譯】
- 加氫脫硫過(guò)程中DBT和4,6-DMDBT動(dòng)力學(xué)參數(shù)的模擬.pdf
- 褐煤溫和加氫液化過(guò)程中酚羥基反應(yīng)行為研究.pdf
- 外文翻譯--軋制過(guò)程中的熱傳遞.doc
- 外文翻譯--軋制過(guò)程中的熱傳遞.doc
- 外文翻譯--磨削過(guò)程中應(yīng)力殘留
- 外文翻譯--磨削過(guò)程中應(yīng)力殘留
- 丁腈橡膠的烯烴復(fù)分解反應(yīng)及催化加氫.pdf
- 煤高溫燃燒過(guò)程中脫硫反應(yīng)機(jī)理的研究及其工業(yè)性應(yīng)用.pdf
- 催化加氫過(guò)程中催化劑的選擇
- 乙酰丙酸加氫反應(yīng)生成γ-戊內(nèi)酯過(guò)程中相關(guān)溶解度的研究.pdf
- 外文翻譯--磨削過(guò)程中應(yīng)力殘留(中文)
評(píng)論
0/150
提交評(píng)論