2007年-外文翻譯--加氫脫硫過(guò)程中烯烴的反應(yīng)活性_第1頁(yè)
已閱讀1頁(yè),還剩10頁(yè)未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說(shuō)明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

1、<p>  Applied Catalysis B: Environmental 70 (2007) 542–547</p><p>  www.elsevier.com/locate/apcatb</p><p>  Reactivity of ole?ns in the hydrodesulfurization of</p><p>  FCC gas

2、oline over CoMo sul?de catalyst</p><p>  加氫脫硫過(guò)程中烯烴的反應(yīng)活性</p><p>  Makoto Toba *, YasuoMiki, Takashi Matsui, Masaru Harada, Yuji Yoshimura</p><p>  National Institute of Advanced Indu

3、strial Science and Technology, Tsukuba Central-5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan</p><p>  Available online 21 June 2006</p><p><b>  Abstract</b></p><p>

4、  To achieve selective hydrodesulfurization (HDS) of ?uid catalytic-cracked (FCC) gasoline for producing sulfur-free gasoline (S < 10 ppm), the</p><p>  reactivity of various ole?ns contained in FCC gasol

5、ine on CoMoP/Al2O3 sul?de catalysts was investigated. Isomerization of the C C double bond</p><p>  from the terminal position to an internal position was observed. The steric hindrance around the C C double

6、 bond suppresses the reactivity of</p><p>  ole?n hydrogenation. The sul?dation temperature of the catalyst has a major in?uence on ole?n hydrogenation active sites. Addition of the</p><p>  app

7、ropriate amount of cobalt (Co/Mo ratio approximately 0.6) contributes to the suppression of ole?n hydrogenation at high reaction temperature</p><p>  (260 8C). From the comparison of catalytic performance an

8、d characterization of our CoMoP/Al2O3 catalyst with an analogous commercial</p><p>  catalyst, it is suggested that the hydrogenation of ole?ns depends not only on the state of the Mo CUS but also on the ste

9、ric effects of both ole?n</p><p>  structure and MoS2 crystalline structure.</p><p>  # 2006 Elsevier B.V. All rights reserved. </p><p>  Keywords: FCC gasoline; Hydrogenation; Ole?

10、n; Cobalt molybdenum catalyst; Hydrodesulfurization</p><p>  1. Introduction</p><p>  FCC gasoline, which is one of the major components of</p><p>  motor gasoline, contains high le

11、vels of sulfur derived from</p><p>  heavy gas oil and atmospheric residues used as FCC feedstock.</p><p>  More than 90% of the sulfur content in gasoline blendstocks</p><p>  deri

12、ves from FCC gasoline. Reduction of sulfur content in FCC</p><p>  gasoline is the most effective strategy for sulfur-free</p><p>  (S < 10 ppm) gasoline production. FCC gasoline also contain

13、s</p><p>  valuable ole?ns which contribute to the octane number of the</p><p>  motor gasoline. Octane-boosting ole?ns in the FCC gasoline</p><p>  are often saturated during the h

14、ydrotreating reaction. There-</p><p>  fore, selective HDS which minimizes octane loss is highly</p><p>  desired in response to ever-tightening controls on sulfur</p><p>  content

15、[1–3].</p><p>  To clarify the structure of the active sites responsible for</p><p>  ole?n conversion, the hydrogenation of typical ole?ns in</p><p>  model feedstock containing su

16、lfur compounds has been</p><p>  extensively studied. Stevens and Edmonds showed by using</p><p>  edge-plane-rich and basal-plane-rich MoS2 that the hydro-</p><p>  * Corresponding

17、 author. Tel.: +81 29 861 4740; fax: +81 29 861 4532.</p><p>  E-mail address: m.toba@aist.go.jp (M. Toba).</p><p>  0926-3373/$ – see front matter # 2006 Elsevier B.V. All rights reserved.</

18、p><p>  doi:10.1016/j.apcatb.2005.12.026</p><p>  genation of butenes is a highly structure-sensitive reaction</p><p>  [4]. Okamoto et al. reported that HDS selectivity depends on<

19、/p><p>  the S/Mo ratio and surface structure of MoS2 catalyst [5].</p><p>  Based on the inhibiting effect of H2S and various ole?ns,</p><p>  Hatanaka et al. [1] proposed that on the

20、 sul?ded CoMo/Al2O3</p><p>  catalyst there are three types of active sites for: (1) HDS, (2)</p><p>  n-ole?n hydrogenation and (3) isoole?n hydrogenation.</p><p>  However, the au

21、thors did not mention the structure of the</p><p>  active sites. Choi et al. [6] examined the hydrogenation of</p><p>  2,3-dimethyl-2-butene and 1-hexene in the presence of 3-</p><p

22、>  methylthiophene over sul?ded CoMo/Al2O3 with different tin</p><p>  loadings. They proposed that interfacial sites between the</p><p>  sul?de phase and the hydroxyl groups of the support

23、play an</p><p>  important role in ole?n hydrogenation. However, the results</p><p>  obtained by these kinds of experiments using a model</p><p>  feedstock do not always adequatel

24、y represent the real</p><p>  catalytic system. In fact FCC gasoline contains complex</p><p>  mixture of ole?ns whose reactivity towards hydrogenation</p><p>  might be in?uenced b

25、y the presence of other ole?ns,</p><p>  hydrocarbons and sulfur compounds.</p><p>  In this study, the reactivity of various ole?ns contained in</p><p>  FCC gasoline in selective

26、HDS over CoMo/Al2O3 catalyst was</p><p>  investigated to clarify the relationship among reaction</p><p>  conditions, active sites of catalysts and selectivity of HDS.</p><p><b

27、>  簡(jiǎn)要</b></p><p>  為了實(shí)現(xiàn)流體催化裂化選擇性脫硫加氫,不產(chǎn)生硫雜質(zhì)氣(硫的濃度小于10ppm),在以CoMoP/Al2O3為催化劑的催化裂化反應(yīng)中,我們對(duì)不同種類的烯烴反應(yīng)活性做了研究,還觀察了碳碳雙鍵從末尾位置變化到中間位置的主要機(jī)理。碳碳雙鍵周圍的位阻抑制了烯烴加氫反應(yīng)過(guò)程中的活性。催化劑在硫化作用中的不同溫度對(duì)脫硫加氫的反應(yīng)活性產(chǎn)生了重要的影響。額外添加適量的鈷(比率

28、大約為0.6)有助于抑制烯烴加氫的反應(yīng)的溫度(260 ℃)。我們對(duì)CoMoP/Al2O3催化劑和類似的工業(yè)催化劑在性能上做了比較,發(fā)現(xiàn)烯烴的加氫不僅取決于Mo CUS的狀態(tài),還與烯烴的結(jié)構(gòu)和二硫化鉬晶體結(jié)構(gòu)有關(guān)。</p><p><b>  1簡(jiǎn)介</b></p><p>  FCC汽油,是機(jī)動(dòng)車用油的主要組成之一,其含有高濃度的硫元素,而這些硫主要來(lái)源于重瓦斯油和大

29、氣殘留,之后又會(huì)被作為催化裂化原材料。在車用油中,超過(guò)90%的硫含量來(lái)源于FCC汽油。在FCC汽油中降低硫含量是實(shí)現(xiàn)汽油無(wú)硫化(硫濃度小于10ppm)的最有效的策略。FCC汽油還包含高價(jià)值的烯烴,這些烯烴可以產(chǎn)生車用汽油所需的辛烷,辛烷在加氫處理反應(yīng)中烯烴鍵經(jīng)常處于飽和狀態(tài)?,F(xiàn)在對(duì)硫含量[1–3]的控制日趨嚴(yán)厲,因此我們非常期望能提高加氫脫硫的選擇性來(lái)最大限度地減少辛烷的損失量。</p><p>  為了清晰闡明

30、烯烴轉(zhuǎn)換過(guò)程中的結(jié)構(gòu),我們對(duì)典型的烯烴加氫反應(yīng)模型進(jìn)行了廣泛的研究。通過(guò)使用棱面與基面原理,史蒂文斯和埃德蒙茲表示二硫化鉬丁烯的加氫反應(yīng)是一個(gè)高度結(jié)構(gòu)敏感反應(yīng)[4].,Okamoto等人表示,脫硫加氫反應(yīng)(HDS)的選擇性取決于S / Mo的比率和二硫化鉬催化劑[5]的表面結(jié)構(gòu)?;诹蚧瘹浜透鞣N烯烴的抑制效果,Hatanaka等人提出CoMo/Al2O3在三種類型的硫化反應(yīng)過(guò)程中起催化作用:(1)脫硫加氫反應(yīng)(2)雙烯烴加氫反應(yīng)(3)單

31、烯烴加氫反應(yīng)。然而,這些人并沒(méi)有提到這種結(jié)構(gòu)的活躍點(diǎn)。崔 [6]等人檢驗(yàn)了的加氫反應(yīng)過(guò)程中,不同程度錫的量對(duì)2,3二甲基,2丁烯和1,己烯的3甲基噻吩硫化物的影響。他們認(rèn)為在烯烴加氫反應(yīng)的過(guò)程中,各個(gè)羥基的連接點(diǎn)的支持發(fā)揮著重要的作用。然而,通過(guò)這些實(shí)驗(yàn)?zāi)P偷玫降慕Y(jié)果并不總是充分代表了真實(shí)催化體系。事實(shí)上FCC汽油包含復(fù)雜的烯烴混合物,這些烯烴的活性可能會(huì)受到其他烯烴、碳?xì)浠衔锖土虻幕衔锏挠绊憽?lt;/p><p&g

32、t;  在這項(xiàng)研究中,專家們研究了FCC汽油中包含的各種烯烴的反應(yīng)活性以此來(lái)證明反應(yīng)過(guò)程中反應(yīng)條件、催化劑活躍點(diǎn)以及HDS反應(yīng)選擇性之間的關(guān)系。</p><p>  M. Toba et al. / Applied Catalysis B: Environmental 70 (2007) 542–547</p><p><b>  543</b></p>

33、<p>  2. Experimental</p><p><b>  Table 1</b></p><p>  Properties of FCC gasoline</p><p>  CoMoP/Al2O3 sul?de catalysts were prepared by incipient</p><p

34、>  wetness impregnation of g-alumina (surface area: 195 m2/g)</p><p>  with a mixed solution obtained from molybdenum oxide, cobalt</p><p>  carbonate, a phosphate salt and a special ligand.

35、CoO and MoO3</p><p>  contents were 2.3 and 12.0 wt.% (Co/Mo = 0.36 (mol/mol)), 3.1</p><p>  and 12.0 wt.% (Co/Mo = 0.50 (mol/mol)), 3.9 and 12.0 wt.%</p><p>  (Co/Mo = 0.62 (mol/mo

36、l)) and 5.4 and 12.0 wt.% (Co/</p><p>  Mo = 0.85 (mol/mol)), respectively. A commercial CoMoP/</p><p>  Al2O3 sul?de catalyst (3.1 wt.%CoO and 12.0 wt.%MoO3 (Co/</p><p>  Mo = 0.50

37、 (mol/mol)) was used for comparison purpose. All</p><p>  catalysts were sul?ded in situ under of 5%H2S/H2 ?ow (200 ml/</p><p>  min) between 298 and 360 8C for 3 h before being used in the</

38、p><p><b>  reaction.</b></p><p><b>  3</b></p><p>  Sulfur (wt. ppm)(硫)</p><p>  H/C (atom/atom)(原子)Average molecular weight(平均分子質(zhì)量)</p><

39、;p><b>  GC-RONa</b></p><p><b>  GC-MONb</b></p><p><b>  T90 (8C)</b></p><p>  Hydrocarbon (vol.%)</p><p>  Paraf?ns (P)</p>

40、<p>  Isoparaf?ns (I)</p><p>  Ole?ns (O)</p><p>  Naphthenes (N)</p><p>  Aromatics (A)</p><p>  Full range</p><p><b>  0.733</b></p

41、><p><b>  158.9</b></p><p><b>  1.93</b></p><p><b>  101.5</b></p><p><b>  90.5</b></p><p><b>  79.5<

42、/b></p><p><b>  165.9</b></p><p><b>  5.5</b></p><p><b>  37.6</b></p><p><b>  26.3</b></p><p><b>

43、  9.2</b></p><p><b>  21.4</b></p><p><b>  Heavy A</b></p><p><b>  0.771</b></p><p><b>  234.1</b></p><

44、p><b>  1.83</b></p><p><b>  111.5</b></p><p><b>  88.9</b></p><p><b>  78.2</b></p><p><b>  176.6</b><

45、/p><p><b>  4.8</b></p><p><b>  32.4</b></p><p><b>  19.7</b></p><p><b>  12.4</b></p><p><b>  30.8</

46、b></p><p><b>  Heavy B</b></p><p><b>  0.780</b></p><p><b>  61.8</b></p><p><b>  1.80</b></p><p><b&

47、gt;  114.6</b></p><p><b>  89.5</b></p><p><b>  78.6</b></p><p><b>  182.3</b></p><p><b>  4.4</b></p><

48、p><b>  25.8</b></p><p><b>  25.5</b></p><p><b>  12.6</b></p><p><b>  31.7</b></p><p>  The selective HDS of FCC gaso

49、line was carried out in a</p><p>  high-pressure ?xed-bed continuous-?ow reactor as described</p><p>  previously [7]. The products were collected using a liquid–gas</p><p>  separa

50、tor at À15 8C and atmospheric pressure. The reaction</p><p><b>  a</b></p><p><b>  b</b></p><p>  GC-RON: research octane number calculated by the resul

51、t of GC analysis.</p><p>  GC-MON: motor octane number calculated by the result of GC analysis.</p><p>  was performed under 1–2 MPa of hydrogen pressure, at 220–</p><p>  260 8C, l

52、iquid hourly space velocity (LHSV) 4 hÀ1, and a</p><p>  volumetric ratio hydrogen (NTP) to feed of 100.</p><p>  The hydrocarbon compositions of feedstock and products</p><p>

53、  were analyzed using a PIONA-GC (Agilent 6890N (JIS K2536)</p><p>  Yokogawa Analytical Systems Co. GPI system). The total</p><p>  sulfur content was measured by elemental analysis (Mitsubishi

54、</p><p>  Chemicals Co., TS-100V). Sulfur compounds were analyzed</p><p>  using a GC-SCD (Agilent 6890-Sievers 355).</p><p>  The HDS and conversion of ole?n (HDO) were calculated

55、as</p><p><b>  follows:</b></p><p>  HDS ð%Þ ¼ ½ðSfeed À SproductÞ=Sfeed?  100</p><p>  C7 (7.2 vol.% (heavy A) and 9.1 vol.% (h

56、eavy B) in total</p><p>  hydrocarbons) ole?ns are the main components in the two kinds</p><p>  of heavy FCC gasoline. Table 2 shows in details the</p><p>  composition of the C6 o

57、le?n contained in the three kinds of</p><p>  FCC gasoline. Internal ole?ns prevailed on the terminal ones.</p><p>  The compositions of C5 and C7 ole?n compositions are similar</p><p

58、>  to that for C6 ole?ns. Four kinds of C6 ole?ns (2-hexene, 3-</p><p>  hexene, 4-methyl-2-pentene and 3-methyl-2-pentene) have</p><p>  trans and cis isomers. Due to steric effect it is exp

59、ected that the</p><p><b>  Table 2</b></p><p>  C6 ole?ns contained in three kinds of FCC gasoline</p><p>  where Sfeed and Sproduct indicate the amount of sulfur in the

60、 feed</p><p><b>  Ole?n</b></p><p>  Composition (% in total acyclic C6 ole?ns)</p><p>  and product, respectively.</p><p>  Full range</p><p>

61、<b>  Heavy A</b></p><p><b>  Heavy B</b></p><p>  HDO ð%Þ ¼ ½ðT feed À T productÞ=T feed?  100</p><p>  where Tf eed

62、 and Tproduct indicate the ole?n concentration deter-</p><p>  mined by GC analysis in the feed and products, respectively.</p><p>  Three kinds of FCC gasoline were used: (a) full-range FCC<

63、/p><p>  gasoline, (b) heavy A (60 8C + distillate of full-range FCC</p><p>  gasoline (a)) and (c) heavy B (heavy FCC gasoline supplied from</p><p>  another re?nery). Their propertie

64、s are summarized in Table 1.</p><p>  High sulfur FCC gasoline was prepared by mixing thiophene</p><p>  Terminal ole?ns(末端烯烴)</p><p><b>  RCH CH2</b></p><p&g

65、t;  1-Hexene1(己烯)</p><p>  3-Methyl-1-pentene(3甲基1戊烯)</p><p>  4-Methyl-1-pentene43,3-Dimethyl-1-butene(3、3二甲基1丁烯)</p><p><b>  R1R2C CH2</b></p><p>  2-Meth

66、yl-1-pentene(2甲基1戊烯)</p><p>  2-Ethyl-1-butene(2甲基1丁烯)</p><p>  2,3-Dimethyl-1-butene(2,3甲基1丁烯)</p><p><b>  9.9</b></p><p><b>  5.0</b></p>

67、;<p><b>  2.7</b></p><p><b>  1.8</b></p><p><b>  0.3</b></p><p><b>  11.3</b></p><p><b>  8.7</b><

68、;/p><p><b>  0</b></p><p><b>  2.7</b></p><p><b>  6.3</b></p><p><b>  4.3</b></p><p><b>  1.2</b>

69、</p><p><b>  0.8</b></p><p><b>  0</b></p><p><b>  8.1</b></p><p><b>  6.8</b></p><p><b>  0</b>

70、;</p><p><b>  1.3</b></p><p><b>  7.6</b></p><p><b>  5.2</b></p><p><b>  1.5</b></p><p><b>  0.9<

71、/b></p><p><b>  0</b></p><p><b>  8.5</b></p><p><b>  7.1</b></p><p><b>  0</b></p><p><b>  1.4<

72、;/b></p><p>  (S = 480.2 wt. ppm), 2-methylthiophene (S = 480.2 wt. ppm)</p><p>  and benzothiophene (S = 960.4 wt. ppm) with heavy FCC</p><p>  gasoline (heavy B).</p>&l

73、t;p>  3. Results and discussion</p><p>  3.1. Composition of ole?ns contained in FCC gasoline</p><p>  The distributions of ole?ns contained in the three kinds of</p><p>  FCC ga

74、soline were determined by GC analysis. C5 (8.6 vol.%</p><p>  in total hydrocarbon) and C6 (6.7 vol.% in total hydrocarbon)</p><p>  ole?ns are the main components in the full-range FCC gasoline

75、.</p><p>  Most C5 ole?ns are removed by distillation and C6 (5.9 vol.%</p><p>  (heavy A) and 5.8 vol.% (heavy B) in total hydrocarbons) and</p><p>  Internal ole?ns內(nèi)部烯烴</p>

76、<p><b>  R1CH CHR2</b></p><p>  trans-2-Hexene</p><p>  cis-2-Hexene</p><p>  trans-3-Hexene</p><p>  cis-3-Hexene</p><p>  trans-4-Methy

77、l-2-pentene</p><p>  cis-4-Methyl-2-pentene</p><p>  R1R2C CHR3</p><p>  2-Methyl-2-pentene2甲基2丁烯</p><p>  trans-3-Methyl-2-pentene3甲基2丁烯</p><p>  cis-3-Me

78、thyl-2-pentene</p><p>  R1R2C CR3 R4</p><p>  2,3-Dimethyl-2-butene23甲基2丙烯</p><p><b>  40.0</b></p><p><b>  14.6</b></p><p><b&g

79、t;  8.4</b></p><p><b>  7.4</b></p><p><b>  2.6</b></p><p><b>  5.3</b></p><p><b>  1.7</b></p><p>&l

80、t;b>  38.8</b></p><p><b>  16.1</b></p><p><b>  13.9</b></p><p><b>  8.8</b></p><p><b>  0</b></p><p

81、><b>  0</b></p><p><b>  40.9</b></p><p><b>  16.3</b></p><p><b>  9.9</b></p><p><b>  8.0</b></p>

82、<p><b>  2.6</b></p><p><b>  3.3</b></p><p><b>  0.9</b></p><p><b>  44.7</b></p><p><b>  17.2</b></

83、p><p><b>  17.7</b></p><p><b>  9.8</b></p><p><b>  0</b></p><p><b>  0</b></p><p><b>  41.8</b>&l

84、t;/p><p><b>  16.6</b></p><p><b>  10.0</b></p><p><b>  8.0</b></p><p><b>  2.9</b></p><p><b>  3.3</

85、b></p><p><b>  1.0</b></p><p><b>  42.1</b></p><p><b>  17.5</b></p><p><b>  15.5</b></p><p><b>  

86、9.1</b></p><p><b>  0</b></p><p><b>  0</b></p><p><b>  2實(shí)驗(yàn)</b></p><p>  CoMoP/Al2O3催化劑是濕潤(rùn)浸漬的氧化鋁(面積:195平方米/克)以及氧化鉬、鈷碳酸、磷酸鹽和一個(gè)特

87、殊的配位體的混合物。CoO和MoO3的含量分別是2.3和12.0 wt. %(Co / Mo = 0.36(摩爾/摩爾)),3.1和12.0 wt. %(Co / Mo = 0.50(摩爾/摩爾)),3.9和12.0 wt. %(Co / Mo = 0.62(摩爾/摩爾))和5.4和12.0 wt. %( Co / Mo= 0.85(摩爾/摩爾)我們和工業(yè)上使用的CoMoP/Al2O3催化劑(3.1 wt. % CoO和12.0 wt.

88、 % MoO3(Co /Mo= 0.50(摩爾/摩爾))進(jìn)行了比較。在進(jìn)行這個(gè)硫化反應(yīng)之前,所有的催化劑在含有5%的H2S/H2 氣流中(200毫升/分) 在298℃和 360℃溫度中進(jìn)行三個(gè)小時(shí)。</p><p>  就像前文討論到的一樣,F(xiàn)CC汽油選擇性加氫脫硫的反應(yīng)是要在的高壓固定流動(dòng)反應(yīng)器中進(jìn)行。產(chǎn)物需在氣液分離器A15 8 c和大氣壓環(huán)境下才能收集到。這個(gè)反應(yīng)的條件是1 - 2 MPa的氫氣壓力,22

89、0℃ -260℃的溫度,LHSV為4 hÀ1以及氫氣的比達(dá)到100。我們使用了PIONA-GC(安捷倫6890 n(JIS K2536)日本橫河分析系統(tǒng)有限公司價(jià)格指數(shù)系統(tǒng))來(lái)分析了原料和產(chǎn)品的碳?xì)浠衔锝M成,用元素分析(三菱化工有限公司,ts - 100 v)測(cè)定了總的硫含量,用GC-SCD(安捷倫6890 –斯文355)分析了硫化合物的含量。</p><p>  烯烴的加氫脫硫的轉(zhuǎn)換率轉(zhuǎn)換(HDO)

90、計(jì)算如下:</p><p>  HDS ð%Þ ¼ ½ðSfeed À SproductÞ=Sfeed?  100</p><p>  HDO ð%Þ ¼ ½ðT feed À T productÞ=T feed?  100&l

91、t;/p><p>  三種類型的FCC汽油使用情況如下:(a)全程FCC汽油,(b)重型A(60. 8℃+全程餾出物FCC汽油(a))和(c)重型B(從另一個(gè)精煉廠獲得的重型FCC汽油)。表1中列出了一些他們的屬性。高硫含量的FCC汽油是由混合噻吩(S = 480.2 wt. ppm),2 -甲基噻吩(S = 480.2 wt. ppm)和苯并噻吩(S = 960.4 wt. ppm)以及重型 FCC汽油(重型B)混

92、合組成。</p><p><b>  3 結(jié)果與討論</b></p><p>  3.1 FCC汽油中烯烴的合成</p><p>  GC分析在三種不同類型的FCC汽油烯烴的分散中三種起著決定性作用。C5(占碳?xì)浠衔锟偭康?.6 vol. %)和C6(占碳?xì)浠衔锟偭康?.7 vol. %)的烯烴化合物是全程FCC汽油中的主要構(gòu)成物質(zhì)。

93、大多數(shù)C5烯烴化合物都在蒸餾過(guò)程中除去, C6(5.9 vol. %(重型A)5.8vol. %(重型B)和C7(7.2 vol. %(重型A)和9.1 vol. %(重型B)是兩種組成重型FCC汽油的主要物質(zhì)。</p><p><b>  544</b></p><p>  M. Toba et al. / Applied Catalysis B: Environm

94、ental 70 (2007) 542–547</p><p>  Fig. 1. Effect of temperature on isomerization of carbon skeleton of C6 acyclic</p><p>  hydrocarbons contained in the full-range FCC gasoline: (*) branched C6&l

95、t;/p><p>  acyclic hydrocarbons; (~) linear C6 acyclic hydrocarbons; catalyst, CoMoP/</p><p>  Al2O3 (3.1 wt.%CoO–12.0 wt.%MoO3 (Co/Mo = 0.50 (mol/mol))); reaction</p><p>  pressure, 1

96、 MPa; feedstock, FCC gasoline (full-range).</p><p>  reactivity of internal ole?n and trans isomers is lower than that</p><p>  of terminal ole?n and cis isomers, respectively. Therefore, it is&

97、lt;/p><p>  expected that the ole?n composition of FCC gasoline, which is</p><p>  rich in internal ole?ns and trans isomers, improves the</p><p>  selectivity of hydrodesulfurization

98、reaction (selective HDS).</p><p>  3.2. Reactivity of ole?ns in the hydrodesulfurization of</p><p>  FCC gasoline</p><p>  Fig. 1 shows the effect of temperature on the skeletal<

99、/p><p>  isomerization of the C6 acyclic hydrocarbons contained in the</p><p>  full-range FCC gasoline. The ratio between linear (the sum of</p><p>  n-hexane, 1-hexene, 2-hexene (tra

100、ns, cis) and 3-hexene (trans,</p><p>  cis)) and branched C6 acyclic hydrocarbons did not depend on</p><p>  the reaction temperature and remained almost constant. This</p><p>  res

101、ult indicates that skeletal isomerization did not occur under</p><p>  Fig. 2. Effect of temperature on composition of C6 acyclic hydrocarbons</p><p>  contained in the full-range FCC gasoline:

102、(*) paraf?ns and isoparaf?ns;</p><p>  (^) RCH CH2 type ole?ns; (~) R1R2C CH2 type ole?ns; (*)</p><p>  R1CH CHR2 type ole?ns; (~) R1R2C CHR3 type ole?ns; ( )</p><p>  R1R2C CR3R4 t

103、ype ole?n; catalyst, CoMoP/Al2O3 (3.1 wt.%CoO–</p><p>  12.0 wt.%MoO3 (Co/Mo = 0.50 (mol/mol))); sul?dation temperature of cata-</p><p>  lyst, 319 8C; reaction pressure, 1 MPa; feedstock, FCC g

104、asoline (full-range).</p><p>  temperature, while conversion of terminal ole?ns remained</p><p>  almost constant in the range of 220–260 8C.</p><p>  Table 3 shows the effects of o

105、le?n structures on their</p><p>  hydrogenation activity in the hydrodesulfurization of full-range</p><p>  FCC gasoline over CoMoP/Al2O3 catalyst. The conversion</p><p>  rates of

106、total C6 ole?n hydrogenation at 220, 240 and 260 8C</p><p>  are 2.2%, 12.6% and 19.9%, respectively. The conversions of</p><p>  terminal ole?ns (x-methyl-1-pentene) and cis ole?ns are much<

107、/p><p>  higher than those of total C6 ole?n conversions. ‘Negative</p><p>  conversion’ means formation of less reactive ole?ns, such as</p><p>  internal and trans ole?ns, from more

108、reactive ole?ns such as</p><p>  terminal and cis ole?ns through C C isomerization. The</p><p><b>  Table 3</b></p><p>  Effect of ole?n structures on their hydrogenatio

109、n activity in the hydrodesulfur-</p><p>  ization of full-range FCC gasoline</p><p>  this set of reaction conditions. Fig. 2 shows the effect of</p><p>  temperature on the composi

110、tion of C6 acyclic hydrocarbons</p><p><b>  Ole?n</b></p><p>  Conversion of each temperature (%)</p><p>  contained in full-range FCC gasoline. At 220 8C the percentage

111、</p><p>  of the saturated acyclic hydrocarbons, such as paraf?ns and</p><p>  x-Methyl-1-pentene</p><p><b>  220 8C</b></p><p><b>  240 8C</b>&

112、lt;/p><p><b>  260 8C</b></p><p>  isoparaf?ns, is slightly increased (from 61.7 to 62.5% of the</p><p>  total amount of C6 acyclic hydrocarbon) at 220 8C. This means</

113、p><p>  that the hydrogenation of ole?ns occurred to a minor extent. At</p><p>  220 8C, the percentages of terminal ole?ns are decreased, while</p><p>  the amounts of internal ole?ns

114、 are increased. These results</p><p>  suggest that the C C double bond is isomerized from the</p><p>  terminal position to an internal position. As in general, the</p><p>  octane

115、 value of an internal ole?n is higher than that of its</p><p>  corresponding terminal ole?n (e.g. 1-hexene: RON = 76.4,</p><p><b>  x =2</b></p><p><b>  x =3</

116、b></p><p><b>  x =4</b></p><p>  x = 5 (=1-Hexene)</p><p>  y-Methyl-2-pentene</p><p><b>  y =2</b></p><p>  y = 3 (trans)</p

117、><p>  y = 3 (cis)</p><p>  y = 4 (trans)</p><p>  y = 4 (cis)</p><p><b>  30.4</b></p><p><b>  58.6</b></p><p><b>

118、  50.8</b></p><p><b>  56.9</b></p><p><b>  À11.9</b></p><p><b>  À17.2</b></p><p><b>  À7.8</b><

119、;/p><p><b>  À1.9</b></p><p><b>  19.9</b></p><p><b>  32.9</b></p><p><b>  67.1</b></p><p><b>  60

120、.4</b></p><p><b>  58.8</b></p><p><b>  À0.8</b></p><p><b>  À7.5</b></p><p><b>  À0.3</b></p>

121、;<p><b>  16.8</b></p><p><b>  37.4</b></p><p><b>  37.8</b></p><p><b>  67.8</b></p><p><b>  64.4</b>

122、;</p><p><b>  60.7</b></p><p><b>  9.0</b></p><p><b>  À1.1</b></p><p><b>  5.5</b></p><p><b>  

123、27.9</b></p><p><b>  45.6</b></p><p>  trans-2-hexene: RON = 92.7, cis-2-hexene: RON = 92.7), the</p><p><b>  z-Hexene</b></p><p>  isomer

124、ization of the C C double bond from the terminal</p><p>  position to an internal position may contribute to octane-</p><p>  boosting and depression of ole?n hydrogenation. Hydrogena-</p>

125、<p>  tion of internal ole?ns increased with increasing reaction</p><p>  z = 2 (trans)</p><p>  z = 2 (cis)</p><p>  z = 3 (trans)</p><p>  z = 3 (cis)</p>

溫馨提示

  • 1. 本站所有資源如無(wú)特殊說(shuō)明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁(yè)內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒(méi)有圖紙預(yù)覽就沒(méi)有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫(kù)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

最新文檔

評(píng)論

0/150

提交評(píng)論