2023年全國碩士研究生考試考研英語一試題真題(含答案詳解+作文范文)_第1頁
已閱讀1頁,還剩68頁未讀, 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡介

1、本文對數(shù)據(jù)挖掘中的序列挖掘算法作了較深入的研究.由于類Apriori算法需要觀多次掃描數(shù)據(jù)庫的缺點(diǎn),降低了算法的效率而且產(chǎn)生的候選集偏多,從而限制了其在商業(yè)中的應(yīng)用;FP-tree算法是對類Apriori算法的一次革命,該算法只需要掃描兩次數(shù)據(jù)庫,但由于采用的是統(tǒng)一的支持度,也使該算法喪失一些優(yōu)勢.典型的數(shù)據(jù)挖掘算法采用的是統(tǒng)一的支持度閥值,這樣會造成兩種不良的后果:其一,丟失有用的頻繁序;其二,對頻繁序列產(chǎn)生有瓶頸效應(yīng).本文提出了一種

2、擴(kuò)展的FP-growth算法來解決多層高維頻繁序列的挖掘問題,我們稱之為E-FP.為了提高E-FP算法的效率,我們在挖掘過程中采用了可變支持度閥值.我們提出的E-FP算法不僅可以在層內(nèi)部產(chǎn)生頻繁序列而且可以產(chǎn)生跨層的頻繁序列,同時(shí)我們還考慮了維的信息.實(shí)驗(yàn)證明我們的E-FP算法比以往的算法更適合于多層高維頻繁序列的挖掘.聚類分析由于其應(yīng)用較為廣泛,已經(jīng)成為數(shù)據(jù)挖掘、數(shù)理統(tǒng)計(jì)等學(xué)科的一個(gè)活躍的研究領(lǐng)域.聚類技術(shù)可以應(yīng)用于模式識別、數(shù)據(jù)分析

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 眾賞文庫僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論